

    
      
          
            
  
HELICS documentation

[image: ] [https://gitter.im/GMLC-TDC/HELICS]
[image: ] [https://docs.helics.org/en/latest]
[image: ] [https://anaconda.org/gmlc-tdc/helics/]
[image: ] [https://github.com/GMLC-TDC/HELICS/releases]
[image: ] [https://github.com/GMLC-TDC/HELICS/blob/main/LICENSE]

This is the documentation for the Hierarchical Engine for Large-scale Infrastructure Co-Simulation (HELICS). HELICS is an
open-source cyber-physical-energy co-simulation framework for energy systems, with a strong tie to the electric
power system. Although HELICS was designed to support very-large-scale (10,000,000+
federates) co-simulations with off-the-shelf power-system,
communication, market, and end-use tools; it has been built to provide a general-purpose, modular, highly-scalable co-simulation framework that runs cross-platform (Linux, Windows, and Mac OS X) and supports both event driven and time
series simulation. It provides users a high-performance way for multiple individual simulation model “federates” from various domains to interact during execution–exchanging data as time advances–and create a larger co-simulation “federation” able to capture rich interactions. Written in modern C++ (C++17), HELICS provides a rich set of APIs for other languages including Python, C, Java, and MATLAB, and has native support within a growing number of energy simulation tools.

Brief History: HELICS began as the core software development of the Grid Modernization Laboratory Consortium (GMLC) project on integrated Transmission-Distribution-Communication simulation (TDC, GMLC project 1.4.15) supported by the U.S. Department of Energy’s Offices of Electricity Delivery and Energy Reliability (OE) and Energy Efficiency and Renewable Energy (EERE). As such, its first use cases centered around modern electric power systems and that domain continues to be one of the core use cases. However, HELICS has since expanded into use for many other domains such as Natural Gas, Water, Weather, and Transportation and new use cases appear frequently. HELICS’s layered, high-performance, co-simulation framework builds on the collective experience of multiple national labs.

Motivation: Energy systems and their associated information and communication technology systems are becoming increasingly intertwined. As a result, effectively designing, analyzing, and implementing modern energy systems increasingly relies on advanced modeling that simultaneously captures both the cyber and physical domains in combined simulations. It is designed to increase scalability and portability in modeling advanced features of highly integrated power system and cyber-physical energy systems.



	User Guide
	Orientation

	HELICS Installation

	HELICS User Tutorial

	Examples

	Support





	Developer Guide
	Style Guide

	Generating SWIG extension

	Run tests

	Generating Documentation

	HELICS Benchmarks

	Description of the different continuous integration test setups running on the CI servers

	(Planned) CI/CD Infrastructure

	Porting Guide: HELICS 2 to 3

	Public API

	RoadMap

	HELICS Type Conversions

	Other notes for developers





	References

	Quick links








            

          

      

      

    

  

    
      
          
            
  
Public API

This file defines what is included in what is considered the stable user API for HELICS.

This API will be backwards code compatible through major version numbers, though functions may be marked deprecated between minor version numbers. Functions in any other header will not be considered in versioning decisions. If other headers become commonly used we will take that into consideration at a later time. Anything marked private is subject to change and most things marked protected can change as well though somewhat more consideration will be given in versioning.

The public API includes the following


	Application API headers


	CombinationFederate.hpp


	Publications.hpp


	Subscriptions.hpp


	Endpoints.hpp


	Filters.hpp


	Translators.hpp


	Federate.hpp


	helicsTypes.hpp


	data_view.hpp


	MessageFederate.hpp


	MessageOperators.hpp


	ValueConverter.hpp


	ValueFederate.hpp


	HelicsPrimaryTypes.hpp


	CallbackFederate.hpp


	queryFunctions.hpp


	FederateInfo.hpp


	Inputs.hpp


	BrokerApp.hpp


	CoreApp.hpp


	timeOperations.hpp


	typeOperations.hpp


	Exceptions: Translators and the global time coordinator option are in Beta and subject to finalization in the 3.4 release (they are mostly final and any changes will be highlighted). Vector subscriptions, and vector inputs are subject to change. The queries to retrieve JSON may update the format of the returned JSON in the future. A general note on queries: the data returned via queries is subject to change, though in general queries will not be removed. As determined by the need of HELICS users and applications, the data structure may change at minor revision numbers. We hope to fully document the queries structure in HELICS v3.4 at which point they will be stable for at least minor releases and changes will be noted. The callback federate API is considered in Beta and may change.






	Core library headers


	Core.hpp


	Broker.hpp


	core-exceptions.hpp


	core-data.hpp


	CoreFederateInfo.hpp


	helicsVersion.hpp


	federate_id.hpp


	helics_definitions.hpp


	NOTE: core headers in the public API are headers that need to be available for the Application API public headers. The core API can be used more directly with static linking but applications are generally recommended to use the application API or other higher level API’s






	C shared library headers


	All C library operations are merged into a single header helics.h


	A helics_api.h header is available for generating interfaces which strips out import declarations and comments. The C shared library API is the primary driver of versioning and changes to that will be considered in all versioning decisions.


	Translator and helicsData API’s and methods are in Beta and subject to revision until the HELICS 3.3 release; comments or bugs are welcome, the 3.2.1 release includes updates to the API’s and is mostly considered feature complete though still subject to revisions.






	App Library


	Player.hpp


	Recorder.hpp


	Echo.hpp


	Source.hpp


	Tracer.hpp


	Probe.hpp


	Clone.hpp


	helicsApp.hpp


	BrokerApp.hpp (aliased to application_api version)


	CoreApp.hpp (aliased to application_api version)






	Exceptions: The vector subscription Objects, and vector Input objects are subject to change.


	C++98 Library All headers are mostly stable. Though we reserve the ability to make changes to make them better match the main C++ API.




In the installed folder are some additional headers from third party libraries (CLI11, utilities), we will try to make sure these are compatible in the features used in the HELICS API, though changes in other aspects of those libraries will not be considered in HELICS versioning, this caveat includes anything in the helics/external and helics/utilities directories. Only changes which impact the signatures defined above will factor into versioning decisions. You are free to use them but they are not guaranteed to be backwards compatible on version changes.




            

          

      

      

    

  

    
      
          
            
  
RoadMap

This document contains tentative plans for changes and improvements of note in upcoming versions of the HELICS library. All dates are approximate and subject to change, but this is a snapshot of the current planning thoughts. See the projects [https://github.com/GMLC-TDC/HELICS/projects] for additional details


[3.5] ~ Summer 2023


	Single thread cores


	Some of the other features listed below






Nearer term features


	Update IPC core


	Full xSDK compatibility


	Separate Java Interface


	Observer App


	Tag based subscriptions






Further in the future


	Updated MPI core


	Some sort of rollback operations


	Remote procedure call type of federate


	Plugin architecture for user defined cores


	Separate octave interface


	Enable mesh networking in HELICS








            

          

      

      

    

  

    
      
          
            
  
Quick links





	Configuration Option Reference


	Queries


	Environment Variables


	C function Reference [https://docs.helics.org/en/latest/doxygen/C_api_index.html]


	CMake Variables


	HELICS Apps







            

          

      

      

    

  

    
      
          
            
  
HELICS 404

Page not found. Please visit the homepage of HELICS documentation [https://docs.helics.org/en/latest] or contact the developers at gitter [https://gitter.im/GMLC-TDC/HELICS].




            

          

      

      

    

  

    
      
          
            

Index



 H
 


H


  	
      	HELICS_CORE_TYPE_DEFAULT (C++ enumerator)


      	HELICS_CORE_TYPE_EMPTY (C++ enumerator)


      	HELICS_CORE_TYPE_HTTP (C++ enumerator)


      	HELICS_CORE_TYPE_INPROC (C++ enumerator)


      	HELICS_CORE_TYPE_INTERPROCESS (C++ enumerator)


      	HELICS_CORE_TYPE_IPC (C++ enumerator)


      	HELICS_CORE_TYPE_MPI (C++ enumerator)


      	HELICS_CORE_TYPE_NNG (C++ enumerator)


      	HELICS_CORE_TYPE_NULL (C++ enumerator)


      	HELICS_CORE_TYPE_TCP (C++ enumerator)


      	HELICS_CORE_TYPE_TCP_SS (C++ enumerator)


      	HELICS_CORE_TYPE_TEST (C++ enumerator)


      	HELICS_CORE_TYPE_UDP (C++ enumerator)


      	HELICS_CORE_TYPE_WEBSOCKET (C++ enumerator)


      	HELICS_CORE_TYPE_ZMQ (C++ enumerator)


      	HELICS_CORE_TYPE_ZMQ_SS (C++ enumerator)


      	HELICS_DATA_TYPE_ANY (C++ enumerator)


      	HELICS_DATA_TYPE_BOOLEAN (C++ enumerator)


      	HELICS_DATA_TYPE_COMPLEX (C++ enumerator)


      	HELICS_DATA_TYPE_COMPLEX_VECTOR (C++ enumerator)


      	HELICS_DATA_TYPE_DOUBLE (C++ enumerator)


      	HELICS_DATA_TYPE_INT (C++ enumerator)


      	HELICS_DATA_TYPE_JSON (C++ enumerator)


      	HELICS_DATA_TYPE_MULTI (C++ enumerator)


      	HELICS_DATA_TYPE_NAMED_POINT (C++ enumerator)


      	HELICS_DATA_TYPE_RAW (C++ enumerator)


      	HELICS_DATA_TYPE_STRING (C++ enumerator)


      	HELICS_DATA_TYPE_TIME (C++ enumerator)


      	HELICS_DATA_TYPE_UNKNOWN (C++ enumerator)


      	HELICS_DATA_TYPE_VECTOR (C++ enumerator)


      	HELICS_ERROR_CONNECTION_FAILURE (C++ enumerator)


      	HELICS_ERROR_DISCARD (C++ enumerator)


      	HELICS_ERROR_EXECUTION_FAILURE (C++ enumerator)


      	HELICS_ERROR_EXTERNAL_TYPE (C++ enumerator)


      	HELICS_ERROR_FATAL (C++ enumerator)


      	HELICS_ERROR_INSUFFICIENT_SPACE (C++ enumerator)


      	HELICS_ERROR_INVALID_ARGUMENT (C++ enumerator)


      	HELICS_ERROR_INVALID_FUNCTION_CALL (C++ enumerator)


      	HELICS_ERROR_INVALID_OBJECT (C++ enumerator)


      	HELICS_ERROR_INVALID_STATE_TRANSITION (C++ enumerator)


      	HELICS_ERROR_OTHER (C++ enumerator)


      	HELICS_ERROR_REGISTRATION_FAILURE (C++ enumerator)


      	HELICS_ERROR_SYSTEM_FAILURE (C++ enumerator)


      	HELICS_ERROR_USER_ABORT (C++ enumerator)


      	HELICS_FILTER_TYPE_CLONE (C++ enumerator)


      	HELICS_FILTER_TYPE_CUSTOM (C++ enumerator)


      	HELICS_FILTER_TYPE_DELAY (C++ enumerator)


      	HELICS_FILTER_TYPE_FIREWALL (C++ enumerator)


      	HELICS_FILTER_TYPE_RANDOM_DELAY (C++ enumerator)


      	HELICS_FILTER_TYPE_RANDOM_DROP (C++ enumerator)


      	HELICS_FILTER_TYPE_REROUTE (C++ enumerator)


      	HELICS_FLAG_DEBUGGING (C++ enumerator)


      	HELICS_FLAG_DELAY_INIT_ENTRY (C++ enumerator)


      	HELICS_FLAG_DUMPLOG (C++ enumerator)


      	HELICS_FLAG_ENABLE_INIT_ENTRY (C++ enumerator)


      	HELICS_FLAG_EVENT_TRIGGERED (C++ enumerator)


      	HELICS_FLAG_FORCE_LOGGING_FLUSH (C++ enumerator)


      	HELICS_FLAG_FORWARD_COMPUTE (C++ enumerator)


      	HELICS_FLAG_IGNORE (C++ enumerator)


      	HELICS_FLAG_IGNORE_TIME_MISMATCH_WARNINGS (C++ enumerator)


      	HELICS_FLAG_INTERRUPTIBLE (C++ enumerator)


      	HELICS_FLAG_LOCAL_PROFILING_CAPTURE (C++ enumerator)


      	HELICS_FLAG_OBSERVER (C++ enumerator)


      	HELICS_FLAG_ONLY_TRANSMIT_ON_CHANGE (C++ enumerator)


      	HELICS_FLAG_ONLY_UPDATE_ON_CHANGE (C++ enumerator)


      	HELICS_FLAG_PROFILING (C++ enumerator)


      	HELICS_FLAG_PROFILING_MARKER (C++ enumerator)


      	HELICS_FLAG_REALTIME (C++ enumerator)


      	HELICS_FLAG_RESTRICTIVE_TIME_POLICY (C++ enumerator)


      	HELICS_FLAG_ROLLBACK (C++ enumerator)


      	HELICS_FLAG_SINGLE_THREAD_FEDERATE (C++ enumerator)


      	HELICS_FLAG_SLOW_RESPONDING (C++ enumerator)


      	HELICS_FLAG_SOURCE_ONLY (C++ enumerator)


      	HELICS_FLAG_STRICT_CONFIG_CHECKING (C++ enumerator)


      	HELICS_FLAG_TERMINATE_ON_ERROR (C++ enumerator)


      	HELICS_FLAG_UNINTERRUPTIBLE (C++ enumerator)


      	HELICS_FLAG_USE_JSON_SERIALIZATION (C++ enumerator)


      	HELICS_FLAG_WAIT_FOR_CURRENT_TIME_UPDATE (C++ enumerator)


      	HELICS_HANDLE_OPTION_BUFFER_DATA (C++ enumerator)


      	HELICS_HANDLE_OPTION_CLEAR_PRIORITY_LIST (C++ enumerator)


      	HELICS_HANDLE_OPTION_CONNECTION_OPTIONAL (C++ enumerator)


      	HELICS_HANDLE_OPTION_CONNECTION_REQUIRED (C++ enumerator)


      	HELICS_HANDLE_OPTION_CONNECTIONS (C++ enumerator)


      	HELICS_HANDLE_OPTION_IGNORE_INTERRUPTS (C++ enumerator)


      	HELICS_HANDLE_OPTION_IGNORE_UNIT_MISMATCH (C++ enumerator)


      	HELICS_HANDLE_OPTION_INPUT_PRIORITY_LOCATION (C++ enumerator)


      	HELICS_HANDLE_OPTION_MULTI_INPUT_HANDLING_METHOD (C++ enumerator)


      	HELICS_HANDLE_OPTION_MULTIPLE_CONNECTIONS_ALLOWED (C++ enumerator)


      	HELICS_HANDLE_OPTION_ONLY_TRANSMIT_ON_CHANGE (C++ enumerator)


      	HELICS_HANDLE_OPTION_ONLY_UPDATE_ON_CHANGE (C++ enumerator)


      	HELICS_HANDLE_OPTION_SINGLE_CONNECTION_ONLY (C++ enumerator)


      	HELICS_HANDLE_OPTION_STRICT_TYPE_CHECKING (C++ enumerator)


      	HELICS_ITERATION_REQUEST_FORCE_ITERATION (C++ enumerator)


      	HELICS_ITERATION_REQUEST_ITERATE_IF_NEEDED (C++ enumerator)


      	HELICS_ITERATION_REQUEST_NO_ITERATION (C++ enumerator)


      	HELICS_ITERATION_RESULT_ERROR (C++ enumerator)


      	HELICS_ITERATION_RESULT_HALTED (C++ enumerator)


      	HELICS_ITERATION_RESULT_ITERATING (C++ enumerator)


      	HELICS_ITERATION_RESULT_NEXT_STEP (C++ enumerator)


      	HELICS_LOG_LEVEL_CONNECTIONS (C++ enumerator)


      	HELICS_LOG_LEVEL_DATA (C++ enumerator)


      	HELICS_LOG_LEVEL_DEBUG (C++ enumerator)


      	HELICS_LOG_LEVEL_DUMPLOG (C++ enumerator)


      	HELICS_LOG_LEVEL_ERROR (C++ enumerator)


      	HELICS_LOG_LEVEL_INTERFACES (C++ enumerator)


      	HELICS_LOG_LEVEL_NO_PRINT (C++ enumerator)


      	HELICS_LOG_LEVEL_PROFILING (C++ enumerator)


      	HELICS_LOG_LEVEL_SUMMARY (C++ enumerator)


      	HELICS_LOG_LEVEL_TIMING (C++ enumerator)


      	HELICS_LOG_LEVEL_TRACE (C++ enumerator)


      	HELICS_LOG_LEVEL_WARNING (C++ enumerator)


      	HELICS_MULTI_INPUT_AND_OPERATION (C++ enumerator)


      	HELICS_MULTI_INPUT_AVERAGE_OPERATION (C++ enumerator)


      	HELICS_MULTI_INPUT_DIFF_OPERATION (C++ enumerator)


      	HELICS_MULTI_INPUT_MAX_OPERATION (C++ enumerator)


      	HELICS_MULTI_INPUT_MIN_OPERATION (C++ enumerator)


      	HELICS_MULTI_INPUT_NO_OP (C++ enumerator)


      	HELICS_MULTI_INPUT_OR_OPERATION (C++ enumerator)


      	HELICS_MULTI_INPUT_SUM_OPERATION (C++ enumerator)


      	HELICS_MULTI_INPUT_VECTORIZE_OPERATION (C++ enumerator)


      	HELICS_PROPERTY_INT_CONSOLE_LOG_LEVEL (C++ enumerator)


      	HELICS_PROPERTY_INT_FILE_LOG_LEVEL (C++ enumerator)


      	HELICS_PROPERTY_INT_LOG_BUFFER (C++ enumerator)


      	HELICS_PROPERTY_INT_LOG_LEVEL (C++ enumerator)


      	HELICS_PROPERTY_INT_MAX_ITERATIONS (C++ enumerator)


      	HELICS_PROPERTY_TIME_DELTA (C++ enumerator)


      	HELICS_PROPERTY_TIME_GRANT_TIMEOUT (C++ enumerator)


      	HELICS_PROPERTY_TIME_INPUT_DELAY (C++ enumerator)


      	HELICS_PROPERTY_TIME_OFFSET (C++ enumerator)


      	HELICS_PROPERTY_TIME_OUTPUT_DELAY (C++ enumerator)


      	HELICS_PROPERTY_TIME_PERIOD (C++ enumerator)


      	HELICS_PROPERTY_TIME_RT_LAG (C++ enumerator)


      	HELICS_PROPERTY_TIME_RT_LEAD (C++ enumerator)


      	HELICS_PROPERTY_TIME_RT_TOLERANCE (C++ enumerator)


      	HELICS_SEQUENCING_MODE_DEFAULT (C++ enumerator)


      	HELICS_SEQUENCING_MODE_FAST (C++ enumerator)


      	HELICS_SEQUENCING_MODE_ORDERED (C++ enumerator)


      	HELICS_STATE_ERROR (C++ enumerator)


      	HELICS_STATE_EXECUTION (C++ enumerator)


      	HELICS_STATE_FINALIZE (C++ enumerator)


      	HELICS_STATE_FINISHED (C++ enumerator)


      	HELICS_STATE_INITIALIZATION (C++ enumerator)


      	HELICS_STATE_PENDING_EXEC (C++ enumerator)


      	HELICS_STATE_PENDING_FINALIZE (C++ enumerator)


      	HELICS_STATE_PENDING_INIT (C++ enumerator)


      	HELICS_STATE_PENDING_ITERATIVE_TIME (C++ enumerator)


      	HELICS_STATE_PENDING_TIME (C++ enumerator)


      	HELICS_STATE_STARTUP (C++ enumerator)


      	helicsAbort (C++ function)


      	helicsBrokerAddDestinationFilterToEndpoint (C++ function)


      	helicsBrokerAddSourceFilterToEndpoint (C++ function)


      	helicsBrokerClearTimeBarrier (C++ function)


      	helicsBrokerClone (C++ function)


      	helicsBrokerDataLink (C++ function)


      	helicsBrokerDestroy (C++ function)


      	helicsBrokerDisconnect (C++ function)


      	helicsBrokerFree (C++ function)


      	helicsBrokerGetAddress (C++ function)


      	helicsBrokerGetIdentifier (C++ function)


      	helicsBrokerGlobalError (C++ function)


      	helicsBrokerIsConnected (C++ function)


      	helicsBrokerIsValid (C++ function)


      	helicsBrokerMakeConnections (C++ function)


      	helicsBrokerSendCommand (C++ function)


      	helicsBrokerSetGlobal (C++ function)


      	helicsBrokerSetLogFile (C++ function)


      	helicsBrokerSetLoggingCallback (C++ function)


      	helicsBrokerSetTimeBarrier (C++ function)


      	helicsBrokerWaitForDisconnect (C++ function)


      	helicsCleanupLibrary (C++ function)


      	helicsClearSignalHandler (C++ function)


      	helicsCloseLibrary (C++ function)


      	helicsCoreAddDestinationFilterToEndpoint (C++ function)


      	helicsCoreAddSourceFilterToEndpoint (C++ function)


      	helicsCoreClone (C++ function)


      	helicsCoreConnect (C++ function)


      	helicsCoreDataLink (C++ function)


      	helicsCoreDestroy (C++ function)


      	helicsCoreDisconnect (C++ function)


      	helicsCoreFree (C++ function)


      	helicsCoreGetAddress (C++ function)


      	helicsCoreGetIdentifier (C++ function)


      	helicsCoreGlobalError (C++ function)


      	helicsCoreIsConnected (C++ function)


      	helicsCoreIsValid (C++ function)


      	helicsCoreMakeConnections (C++ function)


      	helicsCoreRegisterCloningFilter (C++ function)


      	helicsCoreRegisterFilter (C++ function)


      	helicsCoreSendCommand (C++ function)


      	helicsCoreSetGlobal (C++ function)


      	helicsCoreSetLogFile (C++ function)


      	helicsCoreSetLoggingCallback (C++ function)


      	helicsCoreSetReadyToInit (C++ function)


      	helicsCoreWaitForDisconnect (C++ function)


      	helicsCreateBroker (C++ function)


      	helicsCreateBrokerFromArgs (C++ function)


      	helicsCreateCombinationFederate (C++ function)


      	helicsCreateCombinationFederateFromConfig (C++ function)


      	helicsCreateCore (C++ function)


      	helicsCreateCoreFromArgs (C++ function)


      	helicsCreateFederateInfo (C++ function)


      	helicsCreateMessageFederate (C++ function)


      	helicsCreateMessageFederateFromConfig (C++ function)


      	helicsCreateQuery (C++ function)


      	helicsCreateValueFederate (C++ function)


      	helicsCreateValueFederateFromConfig (C++ function)


      	helicsEndpointAddDestinationFilter (C++ function)


      	helicsEndpointAddDestinationTarget (C++ function)


      	helicsEndpointAddSourceFilter (C++ function)


      	helicsEndpointAddSourceTarget (C++ function)


      	helicsEndpointCreateMessage (C++ function)


      	helicsEndpointGetDefaultDestination (C++ function)


      	helicsEndpointGetInfo (C++ function)


      	helicsEndpointGetMessage (C++ function)


      	helicsEndpointGetName (C++ function)


      	helicsEndpointGetOption (C++ function)


      	helicsEndpointGetTag (C++ function)


      	helicsEndpointGetType (C++ function)


      	helicsEndpointHasMessage (C++ function)


      	helicsEndpointIsValid (C++ function)


      	helicsEndpointPendingMessageCount (C++ function)


      	helicsEndpointRemoveTarget (C++ function)


      	helicsEndpointSendBytes (C++ function)


      	helicsEndpointSendBytesAt (C++ function)


      	helicsEndpointSendBytesTo (C++ function)


      	helicsEndpointSendBytesToAt (C++ function)


      	helicsEndpointSendMessage (C++ function)


      	helicsEndpointSendMessageZeroCopy (C++ function)


      	helicsEndpointSetDefaultDestination (C++ function)


      	helicsEndpointSetInfo (C++ function)


      	helicsEndpointSetOption (C++ function)


      	helicsEndpointSetTag (C++ function)


      	helicsEndpointSubscribe (C++ function)


      	helicsErrorClear (C++ function)


      	helicsErrorInitialize (C++ function)


      	helicsFederateAddDependency (C++ function)


      	helicsFederateClearMessages (C++ function)


      	helicsFederateClearUpdates (C++ function)


      	helicsFederateClone (C++ function)


      	helicsFederateCreateMessage (C++ function)


      	helicsFederateDestroy (C++ function)


      	helicsFederateDisconnect (C++ function)


      	helicsFederateDisconnectAsync (C++ function)


  

  	
      	helicsFederateDisconnectComplete (C++ function)


      	helicsFederateEnterExecutingMode (C++ function)


      	helicsFederateEnterExecutingModeAsync (C++ function)


      	helicsFederateEnterExecutingModeComplete (C++ function)


      	helicsFederateEnterExecutingModeIterative (C++ function)


      	helicsFederateEnterExecutingModeIterativeAsync (C++ function)


      	helicsFederateEnterExecutingModeIterativeComplete (C++ function)


      	helicsFederateEnterInitializingMode (C++ function)


      	helicsFederateEnterInitializingModeAsync (C++ function)


      	helicsFederateEnterInitializingModeComplete (C++ function)


      	helicsFederateFinalize (C++ function)


      	helicsFederateFinalizeAsync (C++ function)


      	helicsFederateFinalizeComplete (C++ function)


      	helicsFederateFree (C++ function)


      	helicsFederateGetCommand (C++ function)


      	helicsFederateGetCommandSource (C++ function)


      	helicsFederateGetCore (C++ function)


      	helicsFederateGetCurrentTime (C++ function)


      	helicsFederateGetEndpoint (C++ function)


      	helicsFederateGetEndpointByIndex (C++ function)


      	helicsFederateGetEndpointCount (C++ function)


      	helicsFederateGetFilter (C++ function)


      	helicsFederateGetFilterByIndex (C++ function)


      	helicsFederateGetFilterCount (C++ function)


      	helicsFederateGetFlagOption (C++ function)


      	helicsFederateGetInput (C++ function)


      	helicsFederateGetInputByIndex (C++ function)


      	helicsFederateGetInputCount (C++ function)


      	helicsFederateGetIntegerProperty (C++ function)


      	helicsFederateGetMessage (C++ function)


      	helicsFederateGetName (C++ function)


      	helicsFederateGetPublication (C++ function)


      	helicsFederateGetPublicationByIndex (C++ function)


      	helicsFederateGetPublicationCount (C++ function)


      	helicsFederateGetState (C++ function)


      	helicsFederateGetTag (C++ function)


      	helicsFederateGetTimeProperty (C++ function)


      	helicsFederateGlobalError (C++ function)


      	helicsFederateHasMessage (C++ function)


      	helicsFederateInfoClone (C++ function)


      	helicsFederateInfoFree (C++ function)


      	helicsFederateInfoLoadFromArgs (C++ function)


      	helicsFederateInfoLoadFromString (C++ function)


      	helicsFederateInfoSetBroker (C++ function)


      	helicsFederateInfoSetBrokerInitString (C++ function)


      	helicsFederateInfoSetBrokerKey (C++ function)


      	helicsFederateInfoSetBrokerPort (C++ function)


      	helicsFederateInfoSetCoreInitString (C++ function)


      	helicsFederateInfoSetCoreName (C++ function)


      	helicsFederateInfoSetCoreType (C++ function)


      	helicsFederateInfoSetCoreTypeFromString (C++ function)


      	helicsFederateInfoSetFlagOption (C++ function)


      	helicsFederateInfoSetIntegerProperty (C++ function)


      	helicsFederateInfoSetLocalPort (C++ function)


      	helicsFederateInfoSetSeparator (C++ function)


      	helicsFederateInfoSetTimeProperty (C++ function)


      	helicsFederateIsAsyncOperationCompleted (C++ function)


      	helicsFederateIsValid (C++ function)


      	helicsFederateLocalError (C++ function)


      	helicsFederateLogDebugMessage (C++ function)


      	helicsFederateLogErrorMessage (C++ function)


      	helicsFederateLogInfoMessage (C++ function)


      	helicsFederateLogLevelMessage (C++ function)


      	helicsFederateLogWarningMessage (C++ function)


      	helicsFederatePendingMessageCount (C++ function)


      	helicsFederateProcessCommunications (C++ function)


      	helicsFederatePublishJSON (C++ function)


      	helicsFederateRegisterCloningFilter (C++ function)


      	helicsFederateRegisterEndpoint (C++ function)


      	helicsFederateRegisterFilter (C++ function)


      	helicsFederateRegisterFromPublicationJSON (C++ function)


      	helicsFederateRegisterGlobalCloningFilter (C++ function)


      	helicsFederateRegisterGlobalEndpoint (C++ function)


      	helicsFederateRegisterGlobalFilter (C++ function)


      	helicsFederateRegisterGlobalInput (C++ function)


      	helicsFederateRegisterGlobalPublication (C++ function)


      	helicsFederateRegisterGlobalTargetedEndpoint (C++ function)


      	helicsFederateRegisterGlobalTypeInput (C++ function)


      	helicsFederateRegisterGlobalTypePublication (C++ function)


      	helicsFederateRegisterInput (C++ function)


      	helicsFederateRegisterInterfaces (C++ function)


      	helicsFederateRegisterPublication (C++ function)


      	helicsFederateRegisterSubscription (C++ function)


      	helicsFederateRegisterTargetedEndpoint (C++ function)


      	helicsFederateRegisterTypeInput (C++ function)


      	helicsFederateRegisterTypePublication (C++ function)


      	helicsFederateRequestNextStep (C++ function)


      	helicsFederateRequestTime (C++ function)


      	helicsFederateRequestTimeAdvance (C++ function)


      	helicsFederateRequestTimeAsync (C++ function)


      	helicsFederateRequestTimeComplete (C++ function)


      	helicsFederateRequestTimeIterative (C++ function)


      	helicsFederateRequestTimeIterativeAsync (C++ function)


      	helicsFederateRequestTimeIterativeComplete (C++ function)


      	helicsFederateSendCommand (C++ function)


      	helicsFederateSetFlagOption (C++ function)


      	helicsFederateSetGlobal (C++ function)


      	helicsFederateSetIntegerProperty (C++ function)


      	helicsFederateSetLogFile (C++ function)


      	helicsFederateSetLoggingCallback (C++ function)


      	helicsFederateSetQueryCallback (C++ function)


      	helicsFederateSetSeparator (C++ function)


      	helicsFederateSetTag (C++ function)


      	helicsFederateSetTimeProperty (C++ function)


      	helicsFederateSetTimeUpdateCallback (C++ function)


      	helicsFederateWaitCommand (C++ function)


      	helicsFilterAddDeliveryEndpoint (C++ function)


      	helicsFilterAddDestinationTarget (C++ function)


      	helicsFilterAddSourceTarget (C++ function)


      	helicsFilterGetInfo (C++ function)


      	helicsFilterGetName (C++ function)


      	helicsFilterGetOption (C++ function)


      	helicsFilterGetTag (C++ function)


      	helicsFilterIsValid (C++ function)


      	helicsFilterRemoveDeliveryEndpoint (C++ function)


      	helicsFilterRemoveTarget (C++ function)


      	helicsFilterSet (C++ function)


      	helicsFilterSetCustomCallback (C++ function)


      	helicsFilterSetInfo (C++ function)


      	helicsFilterSetOption (C++ function)


      	helicsFilterSetString (C++ function)


      	helicsFilterSetTag (C++ function)


      	helicsGetBuildFlags (C++ function)


      	helicsGetCompilerVersion (C++ function)


      	helicsGetDataType (C++ function)


      	helicsGetFederateByName (C++ function)


      	helicsGetFlagIndex (C++ function)


      	helicsGetOptionIndex (C++ function)


      	helicsGetOptionValue (C++ function)


      	helicsGetPropertyIndex (C++ function)


      	helicsGetSystemInfo (C++ function)


      	helicsGetVersion (C++ function)


      	helicsInputAddTarget (C++ function)


      	helicsInputClearUpdate (C++ function)


      	helicsInputGetBoolean (C++ function)


      	helicsInputGetByteCount (C++ function)


      	helicsInputGetBytes (C++ function)


      	helicsInputGetChar (C++ function)


      	helicsInputGetComplex (C++ function)


      	helicsInputGetComplexObject (C++ function)


      	helicsInputGetComplexVector (C++ function)


      	helicsInputGetDouble (C++ function)


      	helicsInputGetExtractionUnits (C++ function)


      	helicsInputGetInfo (C++ function)


      	helicsInputGetInjectionUnits (C++ function)


      	helicsInputGetInteger (C++ function)


      	helicsInputGetName (C++ function)


      	helicsInputGetNamedPoint (C++ function)


      	helicsInputGetOption (C++ function)


      	helicsInputGetPublicationDataType (C++ function)


      	helicsInputGetPublicationType (C++ function)


      	helicsInputGetString (C++ function)


      	helicsInputGetStringSize (C++ function)


      	helicsInputGetTag (C++ function)


      	helicsInputGetTime (C++ function)


      	helicsInputGetType (C++ function)


      	helicsInputGetUnits (C++ function)


      	helicsInputGetVector (C++ function)


      	helicsInputGetVectorSize (C++ function)


      	helicsInputIsUpdated (C++ function)


      	helicsInputIsValid (C++ function)


      	helicsInputLastUpdateTime (C++ function)


      	helicsInputSetDefaultBoolean (C++ function)


      	helicsInputSetDefaultBytes (C++ function)


      	helicsInputSetDefaultChar (C++ function)


      	helicsInputSetDefaultComplex (C++ function)


      	helicsInputSetDefaultComplexVector (C++ function)


      	helicsInputSetDefaultDouble (C++ function)


      	helicsInputSetDefaultInteger (C++ function)


      	helicsInputSetDefaultNamedPoint (C++ function)


      	helicsInputSetDefaultString (C++ function)


      	helicsInputSetDefaultTime (C++ function)


      	helicsInputSetDefaultVector (C++ function)


      	helicsInputSetInfo (C++ function)


      	helicsInputSetMinimumChange (C++ function)


      	helicsInputSetOption (C++ function)


      	helicsInputSetTag (C++ function)


      	helicsIsCoreTypeAvailable (C++ function)


      	helicsLoadSignalHandler (C++ function)


      	helicsLoadSignalHandlerCallback (C++ function)


      	helicsLoadThreadedSignalHandler (C++ function)


      	helicsMessageAppendData (C++ function)


      	helicsMessageClear (C++ function)


      	helicsMessageClearFlags (C++ function)


      	helicsMessageClone (C++ function)


      	helicsMessageCopy (C++ function)


      	helicsMessageFree (C++ function)


      	helicsMessageGetByteCount (C++ function)


      	helicsMessageGetBytes (C++ function)


      	helicsMessageGetDestination (C++ function)


      	helicsMessageGetFlagOption (C++ function)


      	helicsMessageGetMessageID (C++ function)


      	helicsMessageGetOriginalDestination (C++ function)


      	helicsMessageGetOriginalSource (C++ function)


      	helicsMessageGetSource (C++ function)


      	helicsMessageGetString (C++ function)


      	helicsMessageGetTime (C++ function)


      	helicsMessageIsValid (C++ function)


      	helicsMessageReserve (C++ function)


      	helicsMessageResize (C++ function)


      	helicsMessageSetData (C++ function)


      	helicsMessageSetDestination (C++ function)


      	helicsMessageSetFlagOption (C++ function)


      	helicsMessageSetMessageID (C++ function)


      	helicsMessageSetOriginalDestination (C++ function)


      	helicsMessageSetOriginalSource (C++ function)


      	helicsMessageSetSource (C++ function)


      	helicsMessageSetString (C++ function)


      	helicsMessageSetTime (C++ function)


      	helicsPublicationAddTarget (C++ function)


      	helicsPublicationGetInfo (C++ function)


      	helicsPublicationGetName (C++ function)


      	helicsPublicationGetOption (C++ function)


      	helicsPublicationGetTag (C++ function)


      	helicsPublicationGetType (C++ function)


      	helicsPublicationGetUnits (C++ function)


      	helicsPublicationIsValid (C++ function)


      	helicsPublicationPublishBoolean (C++ function)


      	helicsPublicationPublishBytes (C++ function)


      	helicsPublicationPublishChar (C++ function)


      	helicsPublicationPublishComplex (C++ function)


      	helicsPublicationPublishComplexVector (C++ function)


      	helicsPublicationPublishDouble (C++ function)


      	helicsPublicationPublishInteger (C++ function)


      	helicsPublicationPublishNamedPoint (C++ function)


      	helicsPublicationPublishString (C++ function)


      	helicsPublicationPublishTime (C++ function)


      	helicsPublicationPublishVector (C++ function)


      	helicsPublicationSetInfo (C++ function)


      	helicsPublicationSetMinimumChange (C++ function)


      	helicsPublicationSetOption (C++ function)


      	helicsPublicationSetTag (C++ function)


      	helicsQueryBrokerExecute (C++ function)


      	helicsQueryBufferFill (C++ function)


      	helicsQueryCoreExecute (C++ function)


      	helicsQueryExecute (C++ function)


      	helicsQueryExecuteAsync (C++ function)


      	helicsQueryExecuteComplete (C++ function)


      	helicsQueryFree (C++ function)


      	helicsQueryIsCompleted (C++ function)


      	helicsQuerySetOrdering (C++ function)


      	helicsQuerySetQueryString (C++ function)


      	helicsQuerySetTarget (C++ function)


  







            

          

      

      

    

  

    
      
          
            
  
Changelog

All notable changes to this project after the 1.0.0 release will be documented in this file

The format is based on Keep a Changelog [http://keepachangelog.com/en/1.0.0/].
This project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].

A note on future revisions.
Everything within a major version number should be code compatible (with the exception of experimental interfaces). Everything within a single minor release should be network compatible with other federates on the same minor release number. Compatibility across minor release numbers may be possible in some situations but we are not going to guarantee this as those components are subject to performance improvements and may need to be modified at some point. Patch releases will be limited to bug fixes and other improvements not impacting the public API or network compatibility. Check the Public API for details on what is included and excluded from the public API and version stability.


2.8.1 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.8.1] - 2022-06-09

Final release in the 2.X series of HELICS. This release updates dependencies and a few minor fixes, no further bug fixes are expected.


Changed


	Upgraded Units library to 0.6.0


	update fmtlib, spdlog, asio to latest releases


	update CLI11 to latest release


	update boost support to 1.79


	update CMake supported versions to 3.23







2.8.0 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.8.0] - 2021-09-17

Final Minor release in the 2.X series of HELICS. This includes profiling capabilities and a compatibility layer for future compatibility through the “–json” flag. There may be more bug fix releases but no major new features will be added to HELICS 2.


Changed


	Upgraded Units library to 0.5.0


	CMAKE 3.20 was tested and verified and used as the baseline version when available.


	Updated to a newer custom version of JSONCPP to support the json compatibility layer






Fixed


	The uninterruptible flag now works with iterations


	A compile issue with C++20 requiring #include <thread> in a number of files






Added


	Added json data type and flag to support interoperability between HELICS 2 and 3


	Added helicsEndpointPendingMessageCount, helicsFederatePendingMessageCount, and helicsFederateDisconnect[Async|Complete]


	Added a profiling capability [https://docs.helics.org/en/latest/user-guide/advanced_topics/profiling.html]






Deprecated


	helicsEndpointPendingMessages and helicsFederatePendingMessages are replaced by helicsEndpointPendingMessageCount andhelicsFederatePendingMessageCount to match HELICS 3 functions







2.7.1 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.7.1] - 2021-06-03

There were several bug fixes in this patch release. Some of them related to changes in 2.7.0 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.7.0] and some new ones that came up from bug reports. Some new enhancements are experimental signal handlers in the C-api, which will be used in the python interface to provide a little better user experience when trying to kill a co-simulation.


Changed


	String output on recorders is now always JSON compatible and allows escaped characters. This allows some additional values to be displayed in ascii format vs base 64 encoding. #1910


	Players read the string fields through a JSON parser unless marked with b64[] to match the string output on recorders #1910


	The default webserver port is now 8080 to allow user space execution on non-Windows platforms #1936






Fixed


	An issue with recorders writing text fields in the incorrect order which could result in incorrect playback #1910


	Fix an issue with core naming that occasionally resulted in same broker name errors when using default names on federates #1919


	Fix an issue where queries were not being resolved when a core disconnects which could result in deadlock. #1931


	The wait_for_current_time flag was not working properly in some cases where time interruption was also taking place #1933


	Fixed issue with the webserver not responding with the index page when requested or detecting the correct broker for certain trivial requests #1936






Added


	Signal handlers for catching SIGINT and optional user callback are available in the C shared API #1915


	Added support for environment variables for setting some network connection settings and other information #1921


	Queries now have timeouts #1931


	Command line and environment variable options for setting the webserver port numbers #1936







2.7.0 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.7.0] - 2021-04-28

This release includes a major change internally for filters. Testing and usage revealed some scenarios which could cause deadlock or acausal message arrival. These scenarios were not common so the release was delayed until a fix was in place. As of the 2.7.0 release all the identified issues related to the initial bug have been resolved. There remains some outstanding cases that fail rarely in the CI systems specifically related to rerouting filters that are separate from both the location they are rerouting from and to. The resolution of these is uncertain but will be available in a patch release when resolved. Additional changes include major changes to the CI builds due to changing support of Travis CI and other CI services.


Changed


	Update spdlog, fmtlib, filesystem, asio, and units libraries to latest releases (#1798, #1802, #1803)


	Default HELICS_USE_ZMQ_STATIC_LIB to ON if only the static library is found in the search path #1845


	Primary CI systems are now on azure instead of travis #1819


	Only a very limited CI test set is run on formatting PR’s #1761






Fixed


	Tests and fixes allowing multiple filters on the same endpoint #1852


	Fixed some failing broker server tests related to input arguments #1825


	Fixed an issue with barrier and maxTime requests #1788


	Fixed a timing bug when using offset and some specific time requests immediately after the enterExecutingMode #1759


	Several fixes and changes to CI systems related to changes in CI infrastructure #1754, #1790, #1828, #1744, #1739


	Fixed deadlock caused when querying a disconnected HELICS object #1705


	Fixed major timing bug with the use of filters #1717


	Fixed issue when sending messages before execution time #1717






Added


	Support for ZMQ 4.3.4 (this will become default in the next version) #1841


	Added a global_flush query to sweep the internal action message queues #1832


	A vcpkg manifest file for some vcpkg support #1835


	Added an event triggered flag to better handle timing on federates that are primarily or exclusively triggered by events like filters #1804


	Added ordered queries which allow queries to run on the normal vs priority pathways for queries that are desired to be synchronous with the other helics messages #1793


	Added github workflow to compress images #1626


	Additional and clearer warning messages when a message is sent to an unknown destination #1702







2.6.1 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.6.1] - 2020-10-15

Several small bug fixes and minor enhancements to query operations


Changed


	In helics_enum.h flags were separated into separate enums with the same symbols splitting up flags specific to federates, cores, and those applicable to all entities


	CMAKE 3.18 was tested and verified and used as the baseline version when available.


	Default libzmq was updated to 4.3.3






Fixed


	A few flags were unable to be queried through getOptionFlag operations #1655


	The index values for some flags were not able to be retrieved via getFlagIndex operations #1645


	In some cases specifying a custom port of a number less than the default ports led to federates being unable to bind the appropriate port #1648


	Duplicate target specification and warnings were improved #1639


	Certain property strings did not generate the correct property index #1642


	For large packets in the TCP core on particular operating systems partial buffers may be sent and this was not handled property in the tcp core #1600


	Boost 1.74 deprecated some interfaces used in the webserver. The code was updated to support the latest release of boost. #1629


	The requested_time field in the current_time query for federates was missing #1619


	Some broker queries did not reset properly when changes in the federation occurred #1617


	Handle cases of empty install prefix #1577






Added


	The C api now has a query callback method for responding to federate specific queries. #1634


	Some tutorials for the hello_world example on visual studio #1621


	A helicsMessageClear method was added to the C API for clearing the data from a message object #1622


	A global_state query to actively query the current state of all objects in a federation. #1614


	A strict config checking flag to generate errors on potentially incorrect configuration files #1607


	






2.6.0 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.6.0] - 2020-08-20

Bug fixes and major logging update


Changed


	The build flag function now returns correct debug or release flags depending on the build


	The debug postfix d is no longer added to the interface libraries


	Spdlog is now being used for logging inside HELICS and the old logger has been removed this results in fewer thread being generated by HELICS.


	CMake will now error if the install directory is set to the build directory


	Some argument names in the C API have been changed for consistency


	Output a more descriptive error message for mismatched data sizes when converting types #1521


	Some C++98 API functions were added and changed for consistency, specifically endpoint get type no returns a char * instead of std::string, and a getCurrentTime function was added to Federate


	logging level properties from a federateInfo structure will be inherited by a core for the first registered federate






Fixed


	String with negative numerical values were not acknowledging the negation Issue #1306


	Config file parsing was not acknowledging “unit” string #1512


	A performance issue with the tcpss and tcp cores in some cases has been resolved by setting the no_delay option


	Inconsistency in type returned by endpoint getType in C++98 API #1523


	a potential segmentation fault when calling some methods in the C shared library after calling helicsCloseLibrary






Added


	Flags for dumplog and force_logging_flush were added to the C API


	Added missing C++98 call to getCurrentTime


	Added closeLibrary function to the C++98 API


	Added a Python benchmark file


	An option to install the benchmark executables has been added


	Data logging output for both send and receive of messages


	A GitHub Actions workflow to build packages for Linux with the benchmark executables






Removed


	The previous logger including logger.h has been replaced with spdlog







2.5.2 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.5.2] - 2020-06-15

Bug fix release for some build issues and a fix to the wait_for_current_time flag


Fixed


	Bug in the timing subsystem that was preventing the wait_for_current_time flag from functioning properly


	Fixed some oddities in the java tests, that were doing confusing things and happened to work because of the bug in the timing subsystem


	A build system issue that caused the automated generation of python packages to fail on the 2.5.1 release. This was caused by overriding the output build location in all cases, when it should have been limited if the python interface is getting built separately.


	A few cppcheck issue from the new check (#1414)






Added


	Add print_systeminfo flag to root helics_benchmark command (#1417)


	Added cppcheck github action for PR’s







2.5.1 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.5.1] - 2020-06-05


Changed


	All ZeroMQ related files are now located in the network library and under a single namespace


	Use Python 3.8 instead of 3.6 for any release build installers that include a copy of the Python interface (pip or anaconda are the recommended ways to install the Python interface)


	Update units library to include some typical natural gas units and conversions


	Use a separate action for automated pr generation


	Update the CLI11 library


	The setOption/getOption functions now take an int32_t as a value instead of a boolean. This does not change the API since in the C library the helics_bool was already an int.


	In the case of multiple sources, getInjectionType, and getInjectionUnits now will return a json string vector.


	The CMake build generation now uses a central location for all build artifacts instead of individual directories.


	Updated the ASIO library to 1-16


	Minor updates to the clang-format to allow better alignment and comment reflow


	Numerous code refactorings to simplify and clean up code


	Move all ZMQ related items to the network library


	Updated Python packages DLL load failed error to suggest installing the latest Visual C++ Runtime






Fixed


	Sporadic failures in the Webserver and websocket tests


	A bug in the translation of vectors to complex vectors


	A bug in the copying of vectors into the C shared library


	Numerous clang-tidy identified issues mostly for code readability


	Some issues with the exists query not working in certain circumstances and for cores and brokers


	The nonlings test would fail if the branch name had error in it. A check was put into eliminate this false negative test failure.


	A few sporadic failure cases in the http and websocket tests


	A build generation issue with disabling the ZMQ core


	An error from the config interpreter where some flags were not getting correctly propagated to the Federate configuration.






Added


	A helics::zmq target was added for linking with zeromq if using HELICS as a subproject


	A HELICS_BENCHMARK_SHIFT_FACTOR CMake option was added to allow the benchmarks to scale depending on computational resources


	“version” and “version_all” queries to get the local version string and the version strings of all the cores/brokers in the federation


	A few missing operations to the C++98 interface for Message objects, add helicsMessageClone and helicsEndpointCreateMessage functions in the C interface. Add a test case for some of the C++98 message operations.


	helicsQuerySetTarget and helicsQuerySetQueryString operations to modify an existing query in the C interface


	A set of reduction operations for multi-input handling on inputs, options for setting input source priority and the number of expected connections


	A Watts-Strogatz like benchmark


	A few more parameters that can be handled in the Webserver and support for use of uuid instead of name


	A few missing message operators to the C++98 API, such as data, append, setFlag, checkFlag, sendMessageZeroCopy


	Made the Message class return a self Reference for the setters


	A test to run the helics-broker executable as part of the CI tests


	A bug in the helics_broker that no longer ran correct defaults


	A “version_all” query, to retrieve the version of HELICS in use for all cores/brokers, and a “version” query to retrieve the version of a specific target.


	A series of checks for markdown, spelling, shellcheck, python formatting, cpplint, end-of-line and automated generation of PR scripts for the formatting updates.


	Some level of automated scaling for benchmarks for small systems


	API functions for retrieving the build flags used to generate the library


	Some additional message interpreters to aid in debugging


	A test using the standalone helics_broker to run an example







2.5.0 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.5.0] - 2020-04-26

Some library reorganization, additional static analysis(CppLint and clang-tidy), multiBroker, Webserver updates including a websocket interface and the ability to create and destroy brokers from the HTTP and websocket interfaces.


Changed


	Split the HELICS core library into a separate core and network library


	Update FMT library to version 6.2.0


	The core and broker Factories use a map instead of a fixed list which is a step toward allowing user defined cores


	Updated CLI11 included code to customized version to allow configuration of cores and brokers through Json files


	The ordering of the helics_error_types enum is in ascending order


	Refactored the Matlab and Java swig interface builds to enable standalone builds






Fixed


	Added CPPlint and fixed a number of issues that check identified.






Added


	helicsEndpointSendMessageObjectZeroCopy to allow transferring messages with minimal copying.


	helics<Interface>IsValid functions to the C API


	helicscpp::cleanHelicsLibrary to the C++98 API.


	A Comm factory to the Core to enable constructing Comm interfaces directly from the type.


	The REST API in the webserver was updated to include ability to create and destroy brokers.


	A websocket server similar to the REST API but will respond to JSON queries.


	A test suite for the HTTP and websocket servers.


	A Multibroker that can allow multiple communication types to interact together.


	Support for HELICS_BUILD_CONFIGURATION cmake variable for building on unique platforms. The only supported one right now is “PI” for building on raspberry pi platforms.






Deprecated


	in the C shared library helicsFederateGetMessage, helicsEndpointGetMessage, and helicsEndpointSendMessage are deprecated in favor of the object version These will be removed in HELICS 3.0


	deprecated helicsEndpointClearMessage this function does nothing right now, all messages are on a federate level.






Removed




2.4.2 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.4.2] - 2020-03-27

Increased code coverage and additional bug fixes.


Changed


	Update toml11 library to 3.3.1 with some warning fixes for C++17


	The query handling in the core library was cleaned up to be more extensible and uniform






Fixed


	MacOS build with python 2.7 failure


	Fixed some issues with the build/test process if the ENABLE_ZMQ_CORE=OFF


	Fixed a potential issue with queries if they are triggered before the connection ack


	An issue with host name resolution on some systems with restricted DNS lookup


	Allow camelCase in file parameters from JSON


	Fixed linking error with default OpenMPI Spack package


	Fixed timing benchmark federate name






Added


	A series of tests for MessageFederate.cpp to increase coverage on that file to 100%


	Callbacks for custom filters in the C shared library


	A series of tests for CoreApp, BrokerApp, and FederateInfo and a few fixes for them


	A few additional tests of helics supports types and conversions


	CoreApp has a connect() and reset() method and constructor from a Core shared pointer


	BrokerApp has a connect() method and constructor from a Broker shared pointer


	Added a data_flow_graph query which gets all the connections in a federation






Deprecated



Removed




2.4.1 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.4.1] - 2020-03-06

Increased code coverage and additional bug fixes. The error propagation in HELICS was improved such that local errors can be escalated to global errors, and a federate can define errors coming from the federate that are handled appropriately and can halt a co-simulation.


Changed


	The HELICS webserver will build by default if the conditions are met


	Update filesystem library to v1.3.0 [https://github.com/gulrak/filesystem/releases/tag/v1.3.0]


	The behavior of the Federate*Complete slightly modified to be uniform and consistent, no API changes


	Configuration of flags and targets for interfaces in JSON and TOML files can be done in multiple sections


	The benchmark federates have been changed to use a common base benchmark federate class for more consistent behavior


	Switched to including netif as a git submodule


	the error Function in the C++ API is now the same as localError previously it was primary useful for logging and didn’t do much, and will be deprecated in the next release.


	Updated the GitHub actions (clang-format, swig interface updates, and release builds) to use actions/checkout@v2


	Cleaned up the Windows installer (better component names/descriptions and groups, link to Gitter, and require installing Headers to install SWIG)


	Updated the HELICS apps manpages with new options






Fixed


	Issue with iterative requests that were not being honored if the federate was acting in isolation


	A few pathways which would allow segmentation faults if a federate was disconnected and particular functions were called


	ValueFederate addIndexedTargets, the function template would not work as was written and was unusable, it is now tested and operational.






Added


	HELICS_DISABLE_WEBSERVER option to turn off building of the webserver. It will build by default if Boost is enabled and is version 1.70 or higher; otherwise it is disabled.


	A series of tests for Federate.cpp to increase coverage on that file to 100%


	A series of tests for ValueFederate.*pp to increase coverage on that file to 100%


	Docker image for a helics builder which includes build tools and the helics installation


	helics can be installed on MSYS2 [https://helics.readthedocs.io/en/latest/installation/windows.html#msys2] using pacman.


	Standalone benchmark federates for use in multinode benchmark runs


	A FreeBSD 12.1 CI build using Cirrus CI


	Sending an event from GitHub Actions release builds to trigger updating additional HELICS packages when a new release is made


	localError, and GlobalError function calls the Federate API and in the C++ and sharedLibrary.


	helics_terminate_on_error flag to escalate what would be a local error into a global one that will halt the co-simulation. This flag can be specified through the flag to federates or to brokers and cores through a command line option --terminate_on_error


	addDependency function was added to the C++ Federate API and shared library API, it can add a direct dependency between federates manually.


	A 32-bit Windows zip install archive for releases


	“global_time”, “current_time”, and “state” queries for brokers and cores, and “current_time” query for federates.


	Support for a ‘helics-release-build’ event trigger to the release build GitHub Actions workflow






Deprecated



Removed


	HELICS_ENABLE_WEBSERVER option to enable the webserver. This option was added as experimental in 2.4.0


	VS2015 Windows Server 2012 CI build is removed. Azure Pipelines is removing the image [https://devblogs.microsoft.com/devops/removing-older-images-in-azure-pipelines-hosted-pools/] because it is outdated and sees little use. VS2015 is still tested through Appveyor for the time being.







2.4.0 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.4.0] - 2020-02-04

A few bug fixes, code coverage on the shared library increased to 100%, library updates, Broker server enhancements including an http REST API, and a lot of work on the build systems to enable easier releases and packaging.


Changed


	filesystem include updated to 1.2.10


	CLI11 updated to 1.9


	fmt updated to 6.1.2


	variant header updated to latest release


	Update the units library (v0.3.0)


	The TOML interpreter used in HELICS was changed to toml11 [https://github.com/ToruNiina/toml11]


	Some unnecessary files were removed from the all source package


	some internal CMake options and messages were not using new format for message


	Major updates to the python modules build system including merging the python3 and python 2 builds into the same CMake generator


	CMake cleanup and formatting


	A series of changes to the build for more widely supported installations on Linux and MacOS


	The .clang-format file was modified slightly and the entire code base reformatted to the new specification


	the metadata information for the benchmarks was updated


	The FilterOperator class was altered to include a vector output for use with cloning


	TCP and UDP core types are not by default backwards compatible with <2.4 brokers. The flag “–noack_connect” will need to be passed as part of the coreinitialization string to allow this to work if need be. ZMQ_SS cores are not considered interoperable with <2.4 brokers due to a number of bugs. In a few select cases it might still work.






Fixed


	macOS rpath information on the built binaries


	Some issues with swig include directories to allow it to work in other circumstances


	an issue with building the java interface in MSYS2


	an issue with the HELICS_USE_NEW_PYTHON_FIND CMake option


	Some thread sanitizer identified issues


	A series of issues from static analyzers


	an issue in the shared library create core that could emit an exception


	A series of issues related to remote cloning filters not being inline


	Several issues with the zmqss core type it is not backwards compatible with <2.4 brokers


	The code coverage [https://codecov.io/gh/GMLC-TDC/HELICS] on the C shared library was increased to 100% and a number of small bugs fixed as a result. The overall coverage increased to 71.5%






Added


	Several installers for Linux and Mac and builds for pip install


	Allow standalone builds for the python interface


	Added a Ring Message benchmark, like the ring Benchmark except using messages as the token


	Added a Multinode phold benchmark


	Added a c shared library echo benchmark


	git logic to check if the submodules are at the correct version


	an option for a githook to check the formatting


	git warning if the submodule versions are not at the correct version


	a timing benchmark similar to the echo benchmark


	a number of tests for the C shared library including evil tests for testing bad input


	Hooks to test the coverage builds


	a feature to mark a broker or federate as slow responding so it doesn’t time out automatically


	EditorConfig and .gitattributes for cleaner diff and automatic editor configuration


	An incorrect call in the Matlab swig code was fixed


	Automatic generation of pull requests for source code formatting


	Add metadata information to the benchmarks for automatic processing


	Broker server functionality for tcp core, zmqss core, and udp core


	An experimental web server that can be used with the broker server or the broker executables. (requires boost 1.70+ to build)


	man pages for the helics applications






Deprecated


	The ZMQ_SS is not generally compatible between 2.3 and 2.4 Minor releases due to bug fixes.






Removed




2.3.1 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.3.1] - 2019-11-22

Bug Fixes and some code refactoring, pkg-config files have been added to the installs


Changed


	Default installation path for MSYS2 is now configured to be part of the system path, typically /mingw64/ or /mingw32/


	HELICS_ENABLE_SLOW_PACKAGING_TESTS renamed to HELICS_ENABLE_SUBPROJECT_TESTS to better reflect usage


	filesystem library updated to clear up some warnings


	The CI system now runs Xcode9 as the oldest release


	Automatic releases build system was changed to use scripts






Fixed


	Some documentation links in the docs


	Missing helics-enums.h header from the install if HELICS_BUILD_CXX_SHARED_LIB was not enabled


	ZMQ install locations on Linux and macOS if ZMQ is used as a subproject without the HELICS_USE_ZMQ_STATIC_LIB option enabled


	The linux shared library release build so it is compatible with a larger number of systems including older ones back to glibc 2.12.


	Fix some documentation and issues with using the STATIC_STANDARD_LIB CMake option






Added


	CMake option for HELICS_DISABLE_ASIO to completely remove the use the ASIO library, turns off the UDP, and TCP core types, all real-time capabilities, and timeout and heartbeat detection for cores and brokers. ASIO doesn’t support all version of cygwin.


	pkg-config files for the shared libraries are now installed to <prefix>/lib/pkg-config on unix like systems


	Tests and CI builds for installed CMake package files and pkg-config files






Deprecated


	Trying to install on linux/macos systems with cmake older than 3.13 and ZMQ used as a subproject with the shared library is no longer supported. It is likely this use scenario was broken before, now it produces a warning.






Removed


	If HELICS_BUILD_BENCHMARKS is enabled, the option for ENABLE_INPROC_CORE will not show in the cmake-gui.


	If HELICS_BUILD_TESTS is enabled, the option for ENABLE_TEST_CORE will not show in the cmake-gui.







2.3.0 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.3.0] - 2019-11-12

Minor release with lots of CMake updates and build changes and a few fixes and additions. The biggest change is in the C++ shared library and complete removal of boost::test.


Changed


	Converted the shared_library_tests and application_api tests to use Google test instead of Boost test


	Most HELICS CMake options have changed to HELICS_**, with the exception of BUILD_XXX_INTERFACE, and ENABLE_XXX_CORE. These options will not change until HELICS 3.0, at which point all HELICS related CMake options that are not standard CMake options will have a leading HELICS_


	The version string printed by HELICS will include git hash codes and base version information for non-release builds


	Some attempts were made to further modernize the usage in CMake. This effort ended up fixing a few bugs in certain conditions and simplifying things, and the CMake code was also run through a formatter


	The exported C++ shared library has been heavily modified to only include functions in the public API, and is now the recommended way to link with HELICS directly in a C++ program. A HELICS::helics-shared target is now available for linking through CMake. If libraries were previously linking with the installed static library this is a BREAKING Change. Those previously linking with the C++ shared library may also need modifications. Changes include:


	The coreFactory and brokerFactory headers are deprecated as part of the public headers, they are still used internally but should not be used by linking libraries. The public version will remain stable but show deprecated messages. The internal version used by the core will likely be modified in the future.


	New headers for CoreApp and BrokerApp can be used to provide nearly all the same capabilities in the application API.


	New headers typeOperations.hpp and timeOperations.hpp were added to the application_api to provide string operations for the time and core types. In the shared-library core-time, and core-type headers included these headers but that will be deprecated in the future.


	CMake options for building utilities/units/json as object libraries have been removed as they were no longer needed.


	The cereal library is moved to the external folder in the helics directory and is now required to be available for the C++ shared library, so a CMake variable making it optional was removed.


	The reason for this change was partly as a stepping stone for other internal library changes, and to simplify the build complexity and allow more flexibility in linking libraries without impacting the installed interfaces. The previous methods and installed libraries were coming into conflict with other packages and posing increasing challenges in maintenance and linking. This change forced more separation in the HELICS layers, and the installed libraries and simplified a lot of the build generation scripts.






	CLI11, utilities, filesystem and units libraries were updated with latest revisions.






Fixed


	Race condition when removing subscriptions or targets from an interface


	Fixed mistakenly excluded tests and the resulting failures in the CI builds


	Some of the interface functions (Python, Java, etc) were generating incorrect code for getting raw data from inputs.


	The language API’s were not handling Ctrl-C user disconnects well, so some fixes were added to handle that situation better.






Added


	A set of included HELICS benchmarks using the Google benchmark library.


	echo benchmark


	echo message benchmark


	ring benchmark


	PHOLD benchmarks for single machine


	message size and count benchmark


	filter benchmark based on echo message benchmark


	actionMessage benchmarks


	data conversion benchmarks






	The src, test, benchmarks directory can now be used as a root directory for CMake to do the appropriate build with few options.


	Dedicated internal functions for conversion of bool operators, strings such as “off”, “false”, “disabled”, “inactive” are now supported as valid bool values that can be passed.


	Shared libraries for the C++ Application api and apps library are built and installed containing only public API functions and classes. potential breaking change as the CMake library names have changed and the C++ shared library is modified


	Tests executing and linking with the shared libraries


	Example linking with the shared libraries


	a build_flags_target is exported with flags that may effect compilation


	a compile_flags_target is exported, mostly for seeing which non-abi related flags HELICS was built with.


	a helicsXXXMakeConnections function which takes a file to establish linkages for Core and Broker to the C shared API.


	Automated generation of interface code for Python, Matlab, and Java interfaces and automatic PR’s with the changes


	Overloads of federate creation functions in C++ for CoreApp


	Overloads of filter creation function in C++ to use CoreApp


	Docstrings were added using swig -doxygen to Python, Python2 and Java interfaces


	Add “queries” query to core, federate, and broker which gets a list of available queries


	Add “isconnected”, “filters”, “inputs” query to core to retrieve list of available filters and inputs, and if the core is connected.


	Added an INPROC core type, which replaces the TEST core for most user uses, the TEST core does the same thing but has additional functionality to mock network issues for testing, more of these capabilities will be added. The INPROC core will remain simplified and as fast as possible for in process federations.


	Windows CI builds for visual studio 2019, 2017, 2015 on Azure, reduced workload on Appveyor.


	Automatic release file generation for a shared library package on macOS and Linux, and a more complete macOS installation archive. Supported versions are macOS Catalina 10.15 and Ubuntu 18.04, though the macOS binaries might work as far back as 10.11 and the Linux binary should work for older versions and different distributions.






Deprecated


	Use of coreFactory and brokerFactory when using the C++ shared library (use CoreApp and BrokerApp instead)


	coreType and helics-time string conversion functions are no longer defined in the helics-time header. They are still there currently but are deprecated and will be removed in HELICS 3.0
use the typeOperations.hpp and timeOperations.hpp header instead which now defines those functions.






Removed


	All tests using boost::test have now been replaced with Google test, so references and linking to boost::test has been removed


	Exporting and installing the static libraries has been removed (they can still be used by using HELICS as a CMake subproject)


	CMake option to exclude static libs from the install has been removed as no longer needed


	CMake options for building JSONCPP, Utilities, and units libraries as object libraries have been removed as object libraries are no longer being used


	JSONCPP, Utilities, and units libraries are no longer installed in any form, libraries or headers.


	CMake option to install CEREAL headers (they are now required, but are in a different location)







2.2.2 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.2.2] - 2019-10-27

Bug fix release


Fixed


	Links in the README changed with an automated move to travis-ci.com


	Fix issue #853, which was causing core connections to timeout if no direct communication was observed for a period of time. This bug fix release fixes that issue where the pings were not being correctly accounted for in the timeout detection.


	Fix Ctrl-C issue when using HELICS in some language api’s (python and Julia)







2.2.1 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.2.1] - 2019-09-27

Minor release with bug fixes and a few additional features


Changed


	helics apps tests is converted to use Google test and is now being run through the sanitizers


	BREAKING CHANGE The C interface helics logging callback specifications now include a user data object. This is technically a breaking change, but there were a few issues with the current implementation so it is not entirely clear it was usable as it was. There are now some tests for the functionality. This log callback specification was not available in the language API’s and the C++ API has not changed, only the C interface to specifying direct logging callbacks. This is considered a minor change due to no known users of this interface at present and as it was it wasn’t entirely operational. No further changes are expected.


	The use of Boost C++ in the helics core and application api are now limited to the IPC core(there are no plans to remove this usage) and an option to DISABLE_BOOST is available in the CMAKE files. This will turn off the IPC_CORE and any optional uses of boost in some of the libraries. Future features may use Boost but should retain the ability to disable its use.


	BREAKING CHANGE Some function names in the C++98 API were changed to better match the C++ API and were documented more completely through doxygen, these were listed as potentially changing in the Public API so this is not a consideration for semantic versioning. The C++98 API also has limited numbers of users at this point yet and may not be fully stable until HELICS 3.0 release


	The doxygen CMake project was renamed from doc to helics_doxygen


	several variables used by submodules in CMake were hidden


	updated zmq subproject version to 4.3.2






Fixed


	There was a 32 bit issue when using certain vector operation functions in HELICS when compiled with 32 bit, this was preventing the arm 32 from running the tests fully. This issue has been fixed.


	Fixed a race condition related to queries of subscriptions and inputs of a federate if done remotely. The core could lock or a race condition could occur.


	some issues related to file logs


	started to address some recommendations for include-what-you-use


	The CMake conditions for building the C# interface and Python2 interface were not completely correct and incorrectly showed an error which was also incorrectly ignored, so it all worked unless there was an actual error, but those issues have been resolved.






Added


	logMessage functions in the federate for user specified log messages and levels


	logDebugMessage, logWarningMessage, logErrorMessage, logInfoMessage function in all API’s to simplify common logging operations






	function to set the log file from the core C++ API


	A CMAKE option to disable BOOST entirely DISABLE_BOOST


	A CMAKE option HELICS_BINARY_ONLY_INSTALL which will restrict the install to executables and shared libraries with no headers or static libraries.


	Some CMAKE capabilities to better generate the interface files.


	Timeouts on the broker for broker connections, more work is likely needed in the future but for now if a path times out, if things were already disconnecting it assumes it is the equivalent of a disconnect, and if not the federation errors and terminates.


	Automatic release file generation for visual studio builds, windows installers, full source code tar files, and a shared library package.






Removed


	The included build files for the Octave interface have been removed. It is now required to use swig to build these files. The interface file was only valid for Octave 4.2 and had potential to break in later versions. Given the 3 versions of octave in common use it was deemed prudent to just remove the included file and require swig to generate the correct interface, this may be added back in the next release if more testing shows this to not be an issue.







2.2.0 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.2.0] - 2019-08-26

Minor release with some updates to the networking portion of HELICS and some API additions.


Changed


	Submodule updates for filesystem, libfmt, and google test


	A utilities lib containing many string processing and small functions is now used instead of directly including it.






Fixed


	A error response to a core registration will immediately generate an error on federates waiting for registration instead of waiting for a timeout


	HELICS can now compile with standalone mingw and cygwin 32 bit on Windows. ASIO is not compatible with Cygwin 64 bit so no support for that is expected in the near future. Tests in travis exercise the MinGW build.


	Some issues with the ZMQ core generating an error on close due to incorrect builds of ZMQ in some installations.


	Some changes to the network interface selection process that cause issues on certain platforms.






Added


	The ability to specify a broker key for brokers and cores to limit linking to those cores with the appropriate key


	A units library into HELICS, mismatched units are checked and units published as a double with units on the publication and subscription converted internally


	A new API for messages in the C interface. The old interface has difficulties when working with binary data in the message structure. So a message object API was created with appropriate methods to access the data. The previous message API will be deprecated in release 2.3 and removed in 3.0.


	A clone app for cloning an existing federate including all publications and subscriptions and all data that is being sent out. It is accessible through the helics_app clone subcommand


	CI tests using docker for clang memory sanitizer and the octave interface.


	Scripts for generating a single zip file with all the code including submodules. This will be generated for each new release.


	A broker server that generate multiple brokers on a single system and handles the port allocation intelligently. (Only ZMQ currently supported, this is not backwards compatible, though regular 2.2 brokers should work with 2.1 federates if needed.)


	A Docker image containing the HELICS apps (available on Docker Hub for tagged releases and the latest develop branch at https://hub.docker.com/r/helics/helics)






Removed


	ENABLE_SWIG option in CMake as always ON. This option will only appear for interfaces that have existing build files. For swig generated interfaces that do not have prebuilt files (octave, python2, and C#) this option will no longer appear as swig is required.







2.1.1 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.1.1] - 2019-07-15

Minor release which fixes a few bugs and add some JSON related input and queries


Changed


	moved concurrency related structures to a standalone library


	System-tests is now based on google test instead of boost test


	Shared_libary_cpp tests now based on google_test instead of boost test


	the deserializer for ActionMessage now uses memcpy to avoid possible undefined behavior


	The value of helics_time_maxtime has been changed for consistency with the C++ equivalent


	The return type of the helicsCLI11App is now named parse_output instead of parse_return


	fmt and googletest were updated to latest version






Fixed


	a few possible race conditions found by thread-sanitizer


	cleared up a couple scenarios that were triggering occasional test failure in the system tests


	helics_broker and helics_app were returning non-zero return values when --version or --help were used, they now return 0 in those cases


	a small memory leak when a JSON stream builder was created and not destroyed properly


	an inconsistency between the helics_time_maxtime in the C shared library and the maxTime value used in C++, this could in some cases result in failing termination conditions






Added


	queries for getting all current inputs in JSON format.


	query for getting all updated inputs in JSON format


	publication function that accepts a JSON structure for multiple publications


	registration function that generates publications based on same JSON structure as the function that accepts JSON for group publication


	function on the inputs to clear the updates, is used from a query


	a const version of the isUpdated function call on inputs


	Shared OBJECT (SO) versions to the shared libraries






Removed


	libguarded and several concurrency related structures as they are now in a standalone repository that is included through submodules







2.1.0 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.1.0] - 2019-06-27

The main focus of this minor release is cleaning up the build system and extracting required compiled libraries from the HELICS build process, no changes in the C API, and a few additions and deprecations in the C++ API related to command line arguments.


Changed


	remove use of boost::program options and replace usage with CLI11


	remove boost::asio and replace with a submodule for ASIO


	remove included fmt code and replace with submodule


	remove JsonCpp code and replace with a submodule which generates a compiled library - this removed the need to continually regenerate the single header/file with customized namespaces, though if you are using the helics-static library built with a separate JsonCpp static library, the HELICS copy of the jsoncpp static library must be linked with manually (for build systems other than CMake such as waf, meson, premake, etc). Also included is an option to incorporate JsonCpp as an object library within a single helics-static library (default on macOS/Linux), and create a target HELICS::jsoncpp_headers.


	extract several containers used in HELICS to a separate repository for better maintenance and possible reuse elsewhere. Any reference to the containers library was removed from the Public API.


	all required references to boost were removed from the public API.


	the logger headers were split into two sections. The logger.h which includes the logger objects for use in federates was split from the loggerCore which is not publicly accessible.


	The command line arguments are error checked and the help prints all available options (thanks to CLI11)


	the core tests and common tests now use google test instead of boost test. More tests are expected to be migrated in the future.


	updates to the HELICSConfig.cmake file that gets installed to be more resilient to different directory structures.


	use ZMQ as a subproject if needed instead of an autobuild and install it as a target if needed. The CMake option to enable this is ZMQ_SUBPROJECT, replacing AUTOBUILD_ZMQ.


	the cereal library is not installed by default except on visual studio, and there is a CMAKE option to install it HELICS_INSTALL_CEREAL


	some update to the noexcept policy on c++98 interface






Fixed


	an issue with the isUpdated function not registering access (mainly an issue in the C and language interfaces), Issue #655


	certain flags when used with certain brokers could cause errors, Issue #634


	certain flags when used with certain brokers could cause errors Issue #634


	potential issue with only_update_on_change_flag when used at the federate level, along with some tests






Added


	the HELICS library can now operate as a subproject in a larger CMake project if needed


	tcp cores have a –reuse-address flag to allow multiple brokers on the same port, mostly useful for the test suite to prevent spurious failures due to the OS not releasing tcp ports in a timely manner.


	several C++ api functions for using a vector of strings as command line arguments, in the federates and in the broker/core factory, this is related to the transition to CLI11


	tests for building HELICS with musl instead of glibc


	tests for building HELICS on ARM/ARM64






Removed


	tested support of XCode 6.4 and 7.3; these probably still work but we are not testing them anymore.







2.0.0 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.0.0] - 2019-02-12

This is a major revision so this changelog will not capture all the changes that have been made in detail. Some highlights:


	major revision to the API including


	use of an error object in the C api function instead of a return code.


	better match the C++ api in terms of function names and layers.


	The C++ api now uses objects for the interfaces instead of identification ids.






	Filters can have multiple Targets


	Define an input object which can be addressed from outside the federate


	add a ZMQ_SS core type useful for large numbers of federates on a single machine.


	add a TCP_SS socket for firewall usage though it may be applicable in other situations


	numerous bug fixes and internal refactorings.


	add target functions to the interface objects to add and remove targets


	functions to allow cores and brokers to add links between federates


	an octave interface


	an early version of the C# interface.


	an ability to set a global value (as a string) that can be queried.


	a local info field for all the interfaces for user defined string data.


	many other small changes.


	License file changed to match BSD-3-clause exactly(terms are the same but the file had some extra disclaimers in it, now it matches the standard BSD-3-clause license)


	tag source files with appropriate licensing information






1.3.1 [https://github.com/GMLC-TDC/HELICS/releases/tag/v1.3.1] - 2018-09-23


Changed


	wait_for_Broker now uses a condition variable instead of sleep and checking repeatedly


	changed the logging levels to be error, warning, summary, connections, interfaces, timing, data, and trace to better match debugging levels used in development and make the purpose of each level clearer


	comm objects now can use the same logging system as the rest of HELICS






Fixed


	some race conditions in a few test cases and in user disconnection calls for brokers


	certain types of federates would occasionally hang during off nominal shutdown call sequences. Fixing this led to a substantial rewrite of the tcp comms






Added


	federate, broker, and core destroy functions to the C api


	tcp cores have a –reuse-address flag to allow multiple brokers on the same port, mostly useful for the test suite to prevent spurious failures due to the OS not releasing tcp ports in a timely manner.







1.3.0 [https://github.com/GMLC-TDC/HELICS/releases/tag/v1.3.0] - 2018-07-31


Changed


	some CMake options have been removed (BUILD_BROKER)


	major changes to the build of the CTest testing Framework


	moved most examples to new HELICS-Examples [https://github.com/GMLC-TDC/HELICS-Examples] Repo


	added better code for allowing static runtime builds


	use the CMake version numbers instead of independent variables


	Environment variables are recognized in CMAKE find options- split API tests from system wide tests


	added options on MSVC to build with embedded system libraries and embedded debug info.






Fixed


	potential segmentation fault in C shared library when calling free with invalid object.


	autobuild recognizes build configuration






Added


	working octave interface for Linux


	some additional tests for the shared library


	TOML readers for interface description in Federates


	interactive command line for helics_broker


	a few new queries on brokers see Queries


	CPACK can now build a dmg files


	Players can have multiline comments in input file and omit the tag for repeated messages


	marker option on player, recorder, tracer to print time advancement message






Removed


	Most examples are now located in HELICS-Examples [https://github.com/GMLC-TDC/HELICS-Examples]







1.2.1 [https://github.com/GMLC-TDC/HELICS/releases/tag/v1.2.1] - 2018-06-30


Fixed


	bug in the conversion of named points from strings


	MATLAB helicsSubscriptionGetVector function was producing a segmentation fault, now this is fixed


	performance issue in the delay buffers of federateState


	findMPI for MPI libraries with multiple libraries


	federates will now error on missing required publications






Added


	first cut of MATLAB interface tests


	some additional Java test cases


	Python test cases for named point and bool tests


	MATLAB helper scripts for loading the library


	String length function for subscriptions






Changed


	conversion of doubles into the internal time base now rounds to the nearest ns instead of truncating


	unify CMake scripts to use lower case commands







1.2.0 [https://github.com/GMLC-TDC/HELICS/releases/tag/v1.2.0] - 2018-06-18


Fixed


	issue with various filter types and random drop filters


	a few minor issues with C API (helicsFederateSetMaxIterations)


	potential threading issues when updating the logger on an executing federate


	federates will now propagate errors properly for duplicate publications and endpoints


	federates will now error on missing required publications






Changed


	implement use of FMT library instead of boost::format


	improved python installation scripts


	general threading and refactoring of the core


	automatic name generation no longer uses random uuid’s, but a shorter 20 fully character random string






Added


	queryCoreExecute, queryBrokerExecute to the C API to allow queries to be executed directly on brokers and cores


	C++ API changes to for Brokers and Core to allow queries


	Get StringLength function to the C and interface API


	new queries (federate_map, and dependency_graph(partial))


	additional filter tests and query tests


	realtime mode for HELICS specified by activating the realtime flag, and specifying rt_lag and rt_lead the federate will then delay grant or force_grant based on computer clock to match wall time.







1.1.1 [https://github.com/GMLC-TDC/HELICS/releases/tag/v1.1.1] - 2018-05-25


Added


	BrokerApp as a slightly more convenient runner to Brokers


	getXXSize functions directly in the Subscription object instead of a roundabout call in the C api


	more complete error catching for the C library


	added helics-config executable for getting paths and links and used flags


	BrokerApp as a slightly more convenient runner to Brokers






Changed


	upgrade autobuild ZMQ version to 4.2.5 and change CMake scripts to use zmq target


	updated HELICSConfig.cmake install file to link properly to external libraries and find them if necessary, also included some find functions. The find_package(HELICS) should work properly now


	changed boost inclusion to use targets instead of files directly


	changed MPI inclusion to work better on windows and use targets instead of direct links


	update cereal library with latest bug fixes


	update jsoncpp with latest version


	update cppzmq with the latest version


	moved helics_broker executable code to the apps repository


	the CXX shared library can now be built alongside the C shared library and can be built on Windows.






Fixed


	compilation issue with Xcode 8.0


	inconsistent numerical conversion from vectors to doubles in subscriptions






Removed


	installation of HELICSImport.cmake this is now redundant with updated HELICSConfig.cmake







1.1.0 [https://github.com/GMLC-TDC/HELICS/releases/tag/v1.1.0] - 2018-05-09


Added


	namedpoint functions in the C++ for publications and subscriptions, and corresponding functions in the C interface and language API’s


	Boolean publication and subscription for C++ interface, and corresponding functions in the C interface and language API’s


	new options for brokers, –local, –ipv4, –ipv6, –all, are shortcuts for specifying external network interfaces


	additional documentation, CONTRIBUTORS, ROADMAP, CONTRIBUTIONS, and some other documentation improvements






Changed


	the default interface configuration for federates and brokers. The –interface option is less important as interfaces should mostly get automatically determined by the broker address


	minor configuration changes to CMAKE configuration to be more conforming with modern CMAKE best practices


	cleaned up header installation for app directory


	shared library construction now uses some headers generated by CMAKE






Fixed


	better error checking in the C interface


	fixes for occasionally failing tests







1.0.3 [https://github.com/GMLC-TDC/HELICS/releases/tag/v1.0.3] - 2018-04-28


Fixed


	Fix bug preventing federates from terminating if its dependencies are disconnected and using purely interrupt driven timing, such as a recorder







1.0.2 [https://github.com/GMLC-TDC/HELICS/releases/tag/v1.0.2] - 2018-04-27


Fixed


	Bug not allowing command line parameters separate from the command if a positional argument was in usage


	Fixed Bug for federate not allowing changes in period or minTimeDelay after entry to execution mode


	added python2 interface option (this will be available but not fully capable going forward)


	A few more race conditions fixed from clang thread-sanitizer







1.0.1 [https://github.com/GMLC-TDC/HELICS/releases/tag/v1.0.1] - 2018-04-22


Fixed


	Allow Boost 1.67 usage


	allow building with AUTOBUILD for ZeroMQ on Linux


	Clang tidy and static analyzer fixes


	fix some potential race conditions spotted by clang thread-sanitizer


	Fix some documentation to better match recent updates









            

          

      

      

    

  

    
      
          
            
  
Docker installation


Requirements

Docker version 19



Getting a docker from the hub

To search a docker from any repository you can use this command

docker search helics







	NAME

	DESCRIPTION





	helics/octave

	container for testing octave



	helics/buildenv

	containers for helping with the CI test of helics, including building on different compilers in different configurations



	helics/clang-tsan

	container for running clang thread sanitizer



	helics/buildenv:sanitizers

	container for running clang sanitizers



	helics/helics

	container with installed HELICS executables






the helics/helics repository contains a number of tags corresponding to different versions of helics with the all the apps and executables present for each different version.

docker pull helics/helics:develop







Build a new docker image

docker build -t clang-test -f config/Docker/Dockerfile-HELICS-apps .





The HELICS and Sanitizers Dockerfiles will accept a MAKE_PARALLEL build argument that can be used to set how many threads make uses. On machines with low memory such as those used by CI services, setting this too high can result in out of memory compiler errors.

docker build -t clang-test -f config/Docker/Dockerfile-HELICS-apps --build-arg MAKE_PARALLEL=12 .





In addition to this, the HELICS-apps Dockerfile for the HELICS apps currently accepts an ENABLE_GITHUB argument (defaults to false) that when set to true will replace the copied current source directory with a copy of the HELICS source code checked out from GitHub. Due Docker not allowing conditional copy commands, it is recommended to run the docker build from a relatively empty working directory. It will also take a GIT_BRANCH argument (defaults to develop) that can be used to control which GitHub branch or tagged version gets checked out.

docker build -t helics-apps-test -f config/Docker/Dockerfile-HELICS-apps --build-arg ENABLE_GITHUB=true --build-arg GIT_BRANCH=v2.4.0 .







Working with dockerhub

docker images  # will show all images available on your machines







	REPOSITORY

	TAG

	IMAGE ID

	CREATED

	SIZE





	helics-apps-test

	latest

	a2b679e23225

	2 hours ago

	1.96GB






docker tag a2b679e23225  helics/helics:latest  # this will tag the image ID for docker repository helics/helics
docker push helics/helics:latest         # This will push the image to docker hub repository





Any user can pull you docker image using the following command:

docker pull helics/helics:latest





Helics docker can be found on the following web site.

https://cloud.docker.com/u/helics/repository/list



Remove a docker image

docker image rmi a2b679e23225 -f   # using -f force to remove the image id







Run a interactive shell using a docker image as a container

docker run -it helics/helics /bin/bash





You can see what container is running with the ps command

docker ps







	CONTAINER ID

	IMAGE

	COMMAND

	CREATED

	STATUS

	PORTS

	NAMES





	98d7005cba00

	helics/helics

	“/bin/bash”

	2 seconds ago

	Up 2 seconds

	-

	wizardly_gagarin








Working with docker container

When you run a image, docker creates a container, as soon as you exit, the container is destroyed.
You can detached from container (like the application screen) and reattach later.


	to detached: CTRL-P CTRL-D


	to reattached the container found in the table above:




docker ps
docker attach  <Container ID> or <Container Name>
docker attach wizardly_gagarin
...
or
...
docker attach 98d7005cba00





If you modified a container and you would like to save the modification, you can use the commit command.

docker commit -m "I modified this container"  620c7588882e helics-modified






NOTE: The number is the Container Id found with docker ps




to display all container

docker ps -a







Remove all stopped containers

docker rm $(docker ps -a -q)







Reference

All docker command can be found here:

https://docs.docker.com/engine/reference/commandline/cli/





            

          

      

      

    

  _images/43481b36d1e75dcf308b6a0a140d5d88ca7ac8e6.png
O Search or jump to... Pull requests Issues Marketplace Explore

B GMLC-TDC / HELICS-Examples ' Public ©Watch 7 ~ Y Fork 15 J Starred 9 -

<> Code () Issues 26 11 Pull requests 3 ® Actions 8 Projects 00 wiki © security |2 Insights.

¥ main +  HELICS-Examples / user_guide_examples / fundamental / fundamental_message_comm / filter_native / Go to file Add file ~
@  trevorhardy Update native fitter example to match combo federate example @ 9c74e7e 14 seconds ago D) History
O Battery.py Update native filter example to match combo federate example 14 seconds ago
[ BatteryConfig.json Update native filter example to match combo federate example 14 seconds ago
O Chargerpy Update native filter example to match combo federate example 14 seconds ago
[ ChargerConfig.json Update native filter example to match combo federate example 14 seconds ago
O controllerpy Update native filter example to match combo federate example 14 seconds ago
[ controllerConfig.json Update native filter example to match combo federate example 14 seconds ago
[ README.md Clean up User Guide example Markdown files 7 months ago
[ fundamental filter_native_runner.json Update native filter example to match combo federate example 14 seconds ago





_images/456944cca5d9eb62ea1d33cf08ef0699387ab3c0.png
SOC at each charging port

Tuod

zvod

€104

b od

0
o
S vod

20

15

10

time (hr)





_images/5c409e03a1a225fe7d93bd0dcb3227f21afecde1.png
SOC at each charging port

Tuod

zvod

€104

b od

0
o
S vod

20

15

10

time (hr)





_images/66a275258b9b1cadeaf80657a2b5498503eab6a9.png
Advanced Default

Multi-Input

i

®© 4 0 ®© 4 0 ®© 4 0 ®© 4 0 ®© 4 0






_images/4f4a24323df2552614b8c7745c445a2637764adf.png
EV Battery Charger Controller
EV_current

Filter Federate

EV_voltage





_images/5abd265b95d29e5a01561be2812c7c82d1f78743.png
23000
22000
21000
20000
19000
18000
17000
16000
15000
14000
13000
12000
11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Instantaneous Power Draw from 5 EVs

25

50

75
time (hr)

100

125

150

175





_images/748cfa5dc626ea9fd26d82e9241f5fb3333b81d4.png
Message Topology

Transmission and
Generation
System





_images/757f96020bfa0adeaa6898266e1ee46eba6fdd38.png
190
180
170
160
150
140
130
120
110
100

80
70

38883

10

Instantaneous Power Draw from 5 EVs

25

75
time (hr)

100

125

150

175





_images/706331ba13d640cf2b5be519de644aefb126ec3f.png
Instantaneous Power Draw from 5 EVs
10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0 25 50 75 00 125 150 175
time (hr)





_images/72c02f18de1ad226d25728a41f2aa1e1b25c5154.png
SOC of each EV Battery

T od
1@ neg

zuod
eqeg

€ pod
1@ neg

v uod
1@ neg

0
o

s vod

1@ neg

25

20

15

10

time (hr)





_images/7875ac001d3db4939a0182c3af6783832098d0e3.png
EV1

EV2

Ev3

Eva

EVS

10
05

0.0
10

05

0.0
10

05

0.0
10

05

0.0
10

05
0.0

SOC at each charging port

N s v

0 25 50 75 00 125 150
time (hr)

175





_images/7f2577b7901afd263477c0067c57f3d02443afa0.png
19000
18000
17000
16000
15000
14000
13000
12000
11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Instantaneous Power Draw from 5 EVs

5 10
time (hr)

15

20

25





_images/832790e68c8f1631aaf62ae7922dbe599672dde9.png
19000
18000
17000
16000
15000
14000
13000
12000
11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Instantaneous Power Draw from 5 EVs

5 10
time (hr)

15

20

25





_images/8e90e3a6d5681ed2fee19f8a7218b0635233655d.png
SOC of each EV Battery

neg

zneg

€neg

yheg

sneg

50 75 100 125 150 175

25

time (hr)





_images/EVPoisson.png
[
N

=
o

©

Percent Probability of Probability

(SN

0.1

0.2 0.3 0.4 0.5
Probability of Selecting a Level 1, 2, 3 EV

0.6






_images/8c85f7975b44ae306a7a8bae5e8f6bda7105e7b3.png
SOC of each EV Battery

0
o

T od

1@ neg

9
S

0
o
zuod
eqeg

9
S

0
o

€ pod

1@ neg

9
S

0
o

v uod

1@ neg

9
S

0
o

s vod

1@ neg

9
S

50 75 100 125 150 175

25

time (hr)





_images/8db8c5fb69e84234aee8527c5871eb64b26d0bc2.png
24000
23000
22000
21000
20000
19000
18000
17000
16000
15000
14000
13000
12000
11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Instantaneous Power Draw from 5 EVs

5 10
time (hr)

15

20

25





_images/Ex1a_Bus_voltage_118.png


_images/EVfulldist.png
-
o

[N

-
IS
I

-
N

=
o

©

Percent Probability of Probability

0.1 0.2 0.3 0.4 0.5 0.6
Probability of Selecting a Level 1, 2, 3 EV





_images/Ex1a_Broker_topology.png
Broker Topology

~

Transmission and
Generation

System Federate Federate

J






