

HELICS documentation

[image:] [https://gitter.im/GMLC-TDC/HELICS]
[image:] [https://docs.helics.org/en/helics2]
[image:] [https://anaconda.org/gmlc-tdc/helics/]
[image:] [https://github.com/GMLC-TDC/HELICS/releases]
[image:] [https://github.com/GMLC-TDC/HELICS/blob/helics2/LICENSE]

This is the documentation for the Hierarchical Engine for Large-scale Infrastructure Co-Simulation (HELICS). HELICS is an
open-source cyber-physical-energy co-simulation framework for energy systems, with a strong tie to the electric
power system. Although, HELICS was designed to support very-large-scale (100,000+
federates) co-simulations with off-the-shelf power-system,
communication, market, and end-use tools; it has been built to provide a general-purpose, modular, highly-scalable co-simulation framework that runs cross-platform (Linux, Windows, and Mac OS X) and supports both event driven and time
series simulation. It provides users a high-performance way for multiple individual simulation model “federates” from various domains to interact during execution–exchanging data as time advances–and create a larger co-simulation “federation” able to capture rich interactions. Written in modern C++ (C++14), HELICS provides a rich set of APIs for other languages including Python, C, Java, and MATLAB, and has native support within a growing number of energy simulation tools.

Brief History: HELICS began as the core software development of the Grid Modernization Laboratory Consortium (GMLC) project on integrated Transmission-Distribution-Communication simulation (TDC, GMLC project 1.4.15) supported by the U.S. Department of Energy’s Offices of Electricity Delivery and Energy Reliability (OE) and Energy Efficiency and Renewable Energy (EERE). As such, its first use cases center around modern electric power systems, though it can be used for co-simulation in other domains. HELICS’s layered, high-performance, co-simulation framework builds on the collective experience of multiple national labs.

Motivation: Energy systems and their associated information and communication technology systems are becoming increasingly intertwined. As a result, effectively designing, analyzing, and implementing modern energy systems increasingly relies on advanced modeling that simultaneously captures both the cyber and physical domains in combined simulations. It is designed to increase scalability and portability in modeling advanced features of highly integrated power system and cyber-physical energy systems.

	Gitter [https://gitter.im/GMLC-TDC/HELICS]

Basics

	Installation

	Introduction

	User Guide

	Tools with HELICS Support

Reference

	Federate Configuration

	Apps

API Docs

	C API Reference

	C++ API Reference (Doxygen)

Contributing

	Developer Guide

	RoadMap

You can find Doxygen documentation here.

Installation

The first step to using HELICS is to install it.
You’ll need an internet connection to run the commands in this chapter, as we’ll be downloading HELICS from the internet.

We’ll be showing a number of commands as code snippets in the following presentation using a terminal, and those lines may start with $.
You don’t need to type in the $ character; they are there to indicate the start of each command.
Lines that don’t start with $ are typically showing the output of the previous command.

Quick start

Get the latest installers from GitHub Releases [https://github.com/GMLC-TDC/HELICS/releases/latest].

OR

Use conda to install the HELICS Python interface and apps:

conda install -c gmlc-tdc helics

OR

Use pip to install the HELICS Python interface and apps:

pip install helics
pip install helics-apps

OR

Use Spack (requires Spack develop branch or versions released after v0.14.1) on HPC systems (Linux/macOS) to install C/C++ HELICS components and apps:

spack install helics

For more information on supported options (e.g. using a custom HELICS build with MPI support) and troubleshooting tips, see the package managers page for more details, or the documentation for your package manager.

Using an installer for your operating system

Download pre-compiled libraries from the releases page [https://github.com/GMLC-TDC/HELICS/releases/latest] and add them to your path.
Windows users should install the latest version of the Visual C++ Redistributable [https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads].
The installers come with bindings for Python (3.6), MATLAB, and Java extensions precompiled as part of the installation.
All you need to do is add the relevant folders to your User’s PATH variables.

On Windows, you can visit Control Panel -> System -> Advanced System Settings -> Environment Variables and edit your user environment variables to add the necessary Path, PYTHONPATH, JAVAPATH, MATLABPATH environment variables to the corresponding HELICS installed locations.

On MacOS or Linux, you can edit your ~/.bashrc to add the necessary PATH, PYTHONPATH, JAVAPATH, MATLABPATH environment variables to the corresponding HELICS installed locations.

Be sure to restart your CMD prompt on Windows or Terminal on your MacOS/Linux to ensure the new environment variables are in effect.

Using a package manager for your operating system

You can install it using one of the supported package managers.

	Package Manager

Alternatively, you can install from source. See the next section for more information.

OS Specific installation from source

	Windows Installation

	Mac Installation

	Linux Installations

	Docker

	HELICS with language bindings support

	Linking with the HELICS Library

	HELICS CMake options

The following are a few things that could be useful to know before starting out.

Firstly, you can follow HELICS development on our GitHub [https://github.com/GMLC-TDC/HELICS] page.
HELICS is open-source. The development team uses git for version control, and GitHub to host the code publicly.
The latest HELICS will be on the develop branch.
Tagged releases occur on the main branch.
If you clone the HELICS repository, you will be placed in the main branch by default.
To switch to the develop branch, you can type the following:

git checkout develop

To switch to a tagged release, you can type the following:

git checkout v2.3.0

You will not need a full understanding of how git works for installing HELICS, but if you are interested you can find a good git resource in this page [https://git-scm.com/book/en/v2].

Secondly, HELICS is a modern C++ cross-platform software application.
One challenge while maintaining the same codebase across multiple operating systems is that we have to ensure that everything installs correctly everywhere.
The development team uses CMake to build HELICS.
CMake is a cross-platform tool designed to build, test and package software.
Having the latest version of CMake can make the build process much smoother.
CMake reads certain files (CMakeLists.txt) from the HELICS repository, and creates a bunch of build files.
These build files specify how different files depend on each other and when these build files are run, HELICS is built.
The exact instructions to run on each operating system are given in the individual installation instructions, but one important thing to remember is that these build files are essentially temporary files.
If you have an issue building HELICS, once you make a change (installing/removing/adding anything), you probably need to delete these temporary files and re-generate them.
We’ve found in practice that you don’t have to do this too often, but it can save hours of frustration if you are already aware that this needs to be done.

Another valuable piece of information about CMake is that almost every “OPTION” is configurable while you generate the build files.
This means you can pass it configurations settings as a key value pair by adding -D{NAME_OF_OPTION}={VALUE_OF_OPTION} to the cmake command line interface.
For example, to build the Python extension all you need to do is pass in -DBUILD_PYTHON_INTERFACE=ON.
You can also run ccmake . in the build folder, to get a command line interactive prompt to change configuration settings.
On Windows, you can use the cmake GUI to do the same.
Again, there are more instructions in the individual installation pages but a useful trick to know if something isn’t documented or a slightly more advanced feature is required. Available CMake options for HELICS are documented here.

Package Manager

Install using conda (Windows, MacOS, Linux)

Recommended

Install Anaconda [https://www.anaconda.com/download/] or Miniconda [https://conda.io/en/latest/miniconda.html]. It is a Python distribution but also provides a cross platform package manager called conda.

You can then use conda to install HELICS.

conda install -c gmlc-tdc helics

Install using pip (Windows, macOS, Linux, other)

Install Python with pip. Upgrade pip to a recent version using python -m pip install --upgrade.

If you’re on a supported version of Windows, macOS, or Linux (see the HELICS PyPI page [https://pypi.org/project/helics/] for details) you can then use pip to install the HELICS Python interface and helics-apps.

pip install helics
pip install helics-apps

If you are on an unsupported OS or Python version, you will need to install a copy of HELICS first.
Depending on your OS, there could be a copy in the package manager, or you may need to build HELICS from source.
From there, you can use pip install helics as above (NOTE: pip install helics-apps will not work, your package manager or HELICS build from source should install these).
The source distributions section of the PyPI page [https://pypi.org/project/helics/] has some additional useful information on this process.

Install using Spack (macOS, Linux)

Install Spack (a HELICS package is included in the Spack develop branch and Spack releases after v0.14.1).

Run the following command to install HELICS (this may take a while, Spack builds all dependencies from source!):

spack install helics

To get a list of installation options, run:

spack info helics

To enable or disable options, use +, -, and ~. For example, to build with MPI support on the command run would be:

spack install helics +mpi

Troubleshooting shared library errors on Windows

If you encounter an error along the lines of DLL load failed: The specified module could not be found when attempting to use the C shared library installed by a package manager, it is likely a required system dependency is missing. You can determine which DLL it is unable to find using a tool like https://github.com/lucasg/Dependencies to see what dependency is missing for the helics C shared library DLL. It is fine if it shows it can’t find WS2_32.dll, but all other DLLs should be found.
The most likely to be missing is vcruntime140_1.dll, which can be fixed by downloading the latest Visual C++ Redistributable from https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads and installing it.

Windows Installation

Windows Installers

Windows installers are available with the different releases [https://github.com/GMLC-TDC/HELICS/releases]. The release includes zip archives with static libraries containing both the Debug version and Release version for several versions of Visual Studio. There is also an installer and zip file for getting the HELICS apps and shared library along with pre-built Python 3.6 and Java 1.8 interfaces. There is also an archive with just the C shared library and headers, intended for use with 3rd party interfaces.

Build Requirements

	Microsoft Visual C++ 2015 or newer (MS Build Tools also works)

	CMake 3.4 or newer(CMake should be newer than the Visual Studio and Boost version you are using)

	git

	Boost 1.58 or newer

	MS-MPI v8 or newer (if MPI support is needed)

Setup for Visual Studio

Note: Keep in mind that your CMake version should be newer than the boost version and your visual studio version. If you have an older CMake, you may want an older boost version. Alternatively, you can choose to upgrade your version of CMake.

To set up your environment:

	Install Microsoft Visual C++ 2015 or newer (2017 or later is recommended)MSVC [https://visualstudio.microsoft.com/]

	Install
Boost [https://www.boost.org/doc/libs/1_70_0/more/getting_started/windows.html]
Windows downloads [https://dl.bintray.com/boostorg/release/1.70.0/binaries/]
1.61 or later recommended (core library should build with 1.58,
but tests will not). For CMake to detect it automatically either
extract Boost to the root of your drive, or set the BOOST_INSTALL_PATH
environment variable to the install location. The CMake will only automatically find
boost 1.58 or newer.
Building with Visual Studio 2017 will require boost 1.65.1 or newer and CMake 3.9
or newer. Use 14.0 versions for Visual Studio 2015, 14.1 files for Visual studio 2017. Visual studio 2019 will require CMake 3.14 or later.
Boost 1.70 with CMake 3.14+ is the current recommended configuration.

As an (experimental) alternative for installing Boost (and ZeroMQ), you can use vcpkg [https://github.com/microsoft/vcpkg#getting-started] – it is slower
because it builds all dependencies but handles getting the right install paths to dependencies set correctly.
To use it, follow the vcpkg getting started directions to install vcpkg and then run cmake using
-DCMAKE_TOOLCHAIN_FILE=[path to vcpkg]/scripts/buildsystems/vcpkg.cmake, or by setting the environment
variable VCPKG_ROOT=[path to vcpkg] prior to running cmake.

	Optional Only if you need a global Install of ZeroMQ ZeroMQ [http://zeromq.org/build:_start].
We highly recommend skipping this step and running CMake with the
HELICS_ZMQ_SUBPROJECT=ON option enabled(which is default on windows) to automatically set up a project-only
copy of ZeroMQ. The ZeroMQ Windows installer is very
outdated and will not work with new versions of Visual Studio. The CMake generator from ZeroMQ on windows is also functional and can be used to store ZMQ in another location that will need to be specified for HELICS.

	Optional Install
MS-MPI [https://msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx]
if you need MPI support.

	Optional Install
SWIG [http://www.swig.org/download.html]
if you wish to generate the interface libraries, appropriate build files are included in the repository so it shouldn’t be necessary to regenerate unless the libraries are modified. If you want to generate the MATLAB interface a modified version of swig is necessary see MATLAB Swig. For Matlab, Python 3, and Java swig is not necessary. For Octave, Python2, and C# swig install is necessary. The simplest way to install swig is to use chocolatey [https://chocolatey.org/] and use

 choco install swig

from windows power shell.

	Open a Visual Studio Command Prompt, and go to your working
directory.

	Make sure CMake and git are available in the Command Prompt.
If they aren’t, add them to the system PATH variable.

Getting and building from source:

	Set up your environment.

	Open a command prompt. Use git clone to check out a copy of
HELICS.

 git clone https://github.com/GMLC-TDC/HELICS.git

	Go to the checked out HELICS project folder (the default folder
name is HELICS). Create a build folder and open the build
folder. Alternatively, cmake-gui can be used.

 cd HELICS
 mkdir build
 cd build

	Run CMake. It should automatically detect where MPI is installed
if the system path variables are set up correctly, otherwise you
will have to set the CMake path manually. ZMQ_LOCAL_BUILD is set to ON
so ZeroMQ will automatically be built unless the option is changed.

cmake ..

If you need CMake to use a generator other than the default (ex:
selecting between a 32-bit or 64-bit project), the -G option can be
used to specify one of the generators listed by CMake –help. For
Visual Studio 2017, the generator name would be
Visual Studio 15 2017 [arch], where [arch] is optional and can be
either Win64 for a 64-bit project, or left out to generate a 32-bit
project. To avoid problems when building later, this should match the
version of the Boost libraries you are using.

If you installed boost into the root of the C or D drives with the
default location (or the BOOST_INSTALL_PATH environment variable has been set),
CMake should automatically detect their location. Otherwise the
location will need to be manually given to CMake.
NOTE: CMake 3.14 and later separate the architecture into a separate field for the generator

	Open the Visual Studio solution generated by CMake. Under the
Build menu, select Build the Solution. Alternatively, in the
MSBuild command prompt, run the command msbuild HELICS.sln from
the build folder to compile the entire solution. HELICS.sln can be
replaced with the name of one of the projects to build only that
part of HELICS.

Testing

A quick test is to double check the versions of the HELICS player and
recorder (located in the ‘build/src/helics/apps/player/Debug’ folder):

> cd C:/Path/To/build/src/helics/apps/Debug

> helics_player.exe --version
x.x.x 20XX-XX-XX

> helics_recorder.exe --version
x.x.x 20XX-XX-XX

there may be additional build information if a non tagged version is built.

Building HELICS with python support

Setting -DBUILD_PYTHON_INTERFACE=ON will generate a project to build the python interface, if python is installed to a system
path then the appropriate libraries and flags will be automatically found. If SWIG is available and you wish to regenerate the interface, ENABLE_SWIG can be set to ON to use swig
to generate the interface files. SWIG_EXECUTABLE can be set to the path of the swig.exe if
We highly recommend using Anaconda3/Miniconda3 for the Python distribution.
Additionally, you will need to ensure that the Python distribution used is built using the same compiler architecture (x86/x64) as the one you are using to build HELICS, as well as the one that was used to build Boost (as mentioned above).
ZeroMQ will be built using the CMake build process.

[image:]

CMake -DCMake_BUILD_TYPE=Release -DCMake_INSTALL_PREFIX="C:\local\helics-X.X.X" -DBUILD_PYTHON_INTERFACE=ON -G "Visual Studio 14 2015 Win64" ..
CMake --build . --config Release --target install

otherwise they can be set through CMake flags

CMake -DCMake_BUILD_TYPE=Release -DCMake_INSTALL_PREFIX="C:\local\helics-X.X.X" -DBUILD_PYTHON_INTERFACE=ON -G "Visual Studio 14 2015 Win64" ..
CMake --build . --config Release --target install

[image:]

Add the following to the Windows PYTHONPATH environment variable or run the following in the command line.

set PYTHONPATH=C:\local\helics-X.X.X\python;%PYTHONPATH%

If you open a interactive Python session and import HELICS, you should be able to get the version of helics and an output that is similar to the following.

$ ipython
Python 3.6.4 |Anaconda, Inc.| (default, Jan 16 2018, 12:04:33)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.2.1 -- An enhanced Interactive Python. Type '?' for help.

In [1]: import helics

In [2]: helics.helicsGetVersion()
Out[2]: 'x.x.x (20XX-XX-XX)'

[image:]

MSYS2

MSYS2 provides a Linux like terminal environment on your Windows system. MSYS2 can be installed from here [https://www.msys2.org/]. Once MSYS2 has been installed start up msys2.exe. Follow first time updates as described on the MSYS2 website.

Using pacman package manager

HELICS is available on the Mingw-32 and Mingw-64 environments through the MSYS2 repositories. From the MINGW64 shell

$ pacman -Sy mingw64/mingw-w64-x86_64-helics
:: Synchronizing package databases...
 mingw32 453.3 KiB 2.86 MiB/s 00:00 [#####################] 100%
 mingw32.sig 119.0 B 0.00 B/s 00:00 [#####################] 100%
 mingw64 456.0 KiB 2.77 MiB/s 00:00 [#####################] 100%
 mingw64.sig 119.0 B 0.00 B/s 00:00 [#####################] 100%
 msys 185.9 KiB 1804 KiB/s 00:00 [#####################] 100%
 msys.sig 119.0 B 0.00 B/s 00:00 [#####################] 100%
resolving dependencies...
looking for conflicting packages...

Packages (8) mingw-w64-x86_64-gcc-libs-9.2.0-2 mingw-w64-x86_64-gmp-6.2.0-1
 mingw-w64-x86_64-libsodium-1.0.18-1
 mingw-w64-x86_64-libwinpthread-git-8.0.0.5574.33e5a2ac-1
 mingw-w64-x86_64-mpc-1.1.0-1 mingw-w64-x86_64-mpfr-4.0.2-2
 mingw-w64-x86_64-zeromq-4.3.2-1 mingw-w64-x86_64-helics-2.4.0-1

Total Download Size: 9.17 MiB
Total Installed Size: 65.78 MiB

:: Proceed with installation? [Y/n] y

you will be asked to proceed with installation, answering y will install HELICS and the required dependencies.

$ helics_broker --version
2.4.0 (2020-02-16)

The helics apps and libraries are now installed, and can be updated when HELICS gets an update. For the MINGw32 use

$ pacman -Sy mingw32/mingw-w64-i686-helics

if you are installing both the 32 and 64 bit versions or just want a simpler command to type

$ pacboy -Sy helics
:: Synchronizing package databases...

if the python interface is needed on MSYS2 it can be installed through pip but requires some setup first.

$export CMAKE_GENERATOR="MSYS Makefiles"
$pip install helics

This will install the HELICS python extension in the correct location. The pacman package should be installed first

Building HELICS From Source on Windows with MSYS2

After MSYS2 has been successfully updated Some packages need to be installed in order to configure and build HELICS. The following packages need to be installed:

	base-devel

	mingw-w64-x86_64-toolchain

	git

	mingw-w64-x86_64-CMake

	mingw-w64-x86_64-boost

	mingw-w64-x86_64-qt5 (only if you want to be able to run cmake-gui which this guide recommends.)

	mingw-w64-x86_64-zeromq

All packages can be installed by typing the following:

$ pacman -Sy base-devel mingw-w64-x86_64-toolchain git mingw-w64-x86_64-CMake mingw-w64-x86_64-boost mingw-w64-x86_64-qt5 mingw-w64-x86_64-zeromq

For base-devel and mingw-w64-x86_64-toolchain you may have to hit enter for installing all packages that are part of the group package. The qt5 package is quite large, if you are only using it once it might be faster to use ccmake which is a text based interface to CMake. After all the packages have been installed has been done /mingw64/bin must be in the PATH environment variable. If it isn’t then it must be added. Please note that this is only necessary if you are compiling in MSYS2 shell. If you are compiling in the MSYS2 MINGW-64bit shell then /mingw64/bin will be automatically added to the PATH environment variable. If not

$ export PATH=$PATH:/mingw64/bin

Download HELICS Source Code

Now that the MSYS2 environment has been setup and all prerequisite packages have been installed the source code can be compiled and installed. The HELICS source code can be cloned from GitHub by performing the following:

$ git clone https://github.com/GMLC-TDC/HELICS.git

git will clone the source code into a folder in the current working directory called HELICS. This path will be referred to by this guide as HELICS_ROOT_DIR.

Compiling HELICS From Source

Change directories to HELICS_ROOT_DIR. Create a directory called helics-build. This can be accomplished by using the mkdir command. cd into this directory. Now type the following:

$ CMake-gui ../

If this fails that is because mingw-w64-x86_64-qt5 was not installed. If you did install it the CMake gui window should pop up. click the Advanced check box next to the search bar. Then click Configure. A window will pop up asking you to specify the generator for this project. Select “MSYS Makefiles” from the dropdown menu. The native compilers can be used and will most likely default to gcc. The compilers can also be specified manually. Select Finish; once the configure process completes finished several variables will show up highlighted in red. Since this is the first time setup the Boost and ZeroMQ library. Below are the following CMake variables that could to be verified.

	HELICS_ENABLE_CXX_SHARED_LIB should be checked if you are using HELICS with GridLAB-D, GridLAB-D dynamically links with the shared c++ library of HELICS, the default is off so you would need to change it

For others the advanced checkbox can be selected to see some other variables

	Boost_INCLUDE_DIR C:/msys64/mingw64/include

	Boost_LIBRARY_DIR_DEBUG/RELEASE C:/msys64/mingw64/bin

	CMake_INSTALL_PREFIX /usr/local or location of your choice

	ZeroMQ_INCLUDE_DIR C:/msys64/mingw64/include

	ZeroMQ_INSTALL_PATH C:/msys64/mingw64

	ZeroMQ_LIBRARY C:/msys64/mingw64/bin/libzmq.dll.a

	ZeroMQ_ROOT_DIR C:/msys64/mingw64

Once these CMake variables have been correctly verified click Configure if anything was changed. Once that is complete click Generate then once that is complete the CMake-gui can be closed.

Back in the MSYS2 command window[make sure you are in the build directory] type:

$ make -j x

where x is the number of threads you can give the make process to speed up the build. Then once that is complete type: make -j will just use the number of cores you have available

$ make install

unless you changed the value of CMake_INSTALL_PREFIX everything the default install location /usr/local/helics_2_1_0. This install path will be referred to as HELICS_INSTALL for the sections related to GridLab-D.
If you want to build Gridlab-d on Windows with HELICS see Building with HELICS [http://gridlab-d.shoutwiki.com/wiki/Building_GridLAB-D_on_Windows_with_MSYS2#Building_with_the_HELICS_Library]. Please use branch feature/1179 to build with HELICS 2.1 or later instead of the branch listed.

Compiling with clang

Clang does not work to compile on MSYS2 at this time. It has in the past but there are various issues with the clang standard library on MSYS yet so this will be updated if the situation changes. It is getting closer as of (1/30/2020) Mostly it compiles when linked with Libc++ and libc++abi, but there seems to be some missing functions as of yet, so cannot be used other than for some warning checks.

Building with mingw

HELICS can also be built with the standalone MinGW

	We assume you have MinGW installed or know how to install it.

	Boost [https://www.boost.org/doc/libs/1_70_0/more/getting_started/windows.html]; you can use the Windows installer [https://sourceforge.net/projects/boost/files/boost-binaries/] for Boost installed in the default location

	Run CMake to configure and generate build files, using “MinGW Makefiles” as the generator,

	Run mingw32-make -j to build

Building with cygwin

Cygwin is another UNIX like environment on Windows. It has some peculiarities.
HELICS will only build on the 32 bit version due to incompatibilities with ASIO and the 64 bit build. But it does build on the 32 bit versions completely and on the 64 bit version if HELICS_DISABLE_ASIO=ON is set
Also the helics-config utility does not get built due to an incompatibility with the filesystem header.

	required packages include CMake, libboost-devel, make, gcc, g++, libzmq(if using zmq)

	use the unix makefiles generator

Mac Installation

Requirements

	C++11 compiler (C++14 preferred).

	CMake 3.4 or newer

	git

	Boost 1.58 or newer

	ZeroMQ 4.1.4 or newer (if ZeroMQ support is needed)

	MPI-2 implementation (if MPI support is
needed)

Useful Resources

Some basics on using the macOS Terminal (or any Unix/Linux shell) will be useful to fully understand this guide. Articles and tutorials you may find useful include:

	How to add a new path to PATH [http://osxdaily.com/2014/08/14/add-new-path-to-path-command-line/]

	Getting to Understand Linux Shell(s) [https://medium.com/coding-blocks/getting-to-understand-linux-shell-s-start-up-scripts-and-the-environments-path-variable-fc672107b2d7]

	Paths - where’s my command [https://developer.ibm.com/tutorials/l-lpic1-103-1/#paths-where-s-my-command-]

	Unix/Linux for Beginners [https://www.tutorialspoint.com/unix/unix-environment.htm]

	Settling into Unix [http://matt.might.net/articles/settling-into-unix/].

Setup

Note: Keep in mind that your cmake version should be newer than the boost version. If you have an older cmake, you may want an older boost version. Alternatively, you can choose to upgrade your version of cmake.

To set up your environment:

	(if needed) Install git on your system for easy access to the
HELICS source. Download from
git-scm [https://git-scm.com/downloads]. This installs the
command line which is described here. GUI’s interfaces such as
SourceTree [https://www.sourcetreeapp.com/] are another option.

	(if desired) Many required libraries are easiest installed using
the homebrew [https://brew.sh/] package manager. These directions
assume this approach, so unless you prefer to track these
libraries and dependencies down yourself, install it if you don’t
have it yet. As an alternative package manager, you can use
vcpkg [https://github.com/microsoft/vcpkg#getting-started] – it
is slower because it builds all dependencies for source, but instead
of following step below you could either run cmake using
-DCMAKE_TOOLCHAIN_FILE=[path to vcpkg]/scripts/buildsystems/vcpkg.cmake
as shown in the vcpkg getting started instructions, or by setting the
environment variable VCPKG_ROOT=[path to vcpkg] prior to running cmake.

	(if needed) Setup a command-line compile environment

a) Install a C++11 compiler (C++14 preferred). e.g. clang
from the Xcode command line tools. These can be installed
from the command line in Terminal by typing
xcode-select --install and following the on-screen
prompts.
b) Install cmake with brew install cmake. Alternately, a DMG
file is available for cmake from their
website [https://cmake.org/download/].

	Install most dependencies using homebrew.

brew install boost
brew install zeromq
brew install cmake

	Make sure cmake and git are available in the Command Prompt
with which cmake and which git If they aren’t, add them to the
system PATH variable.

Getting and building from source:

	Use git clone to check out a copy of HELICS.

	Create a build folder. Run cmake and give it the path that HELICS
was checked out into.

git clone https://github.com/GMLC-TDC/HELICS
cd HELICS
mkdir build
cd build

Compile and Install

There are a number of different options and approaches at this point depending on your needs, in particular with respect to programming language support.

Note: For any of these options, if you want to install in a custom location, you can add the following CMake argument: -DCMAKE_INSTALL_PREFIX=/path/to/install/folder/. There are also many other options, and you can check them out by running ccmake . in the build folder.

Keep in mind running HELICS commands like helics_app will not work from just any old random folder with a custom install folder.
You will either need to run them from inside the bin subfolder of your custom install, or provide a more complete path to the command.
To run HELICS commands from any folder, you must add the bin subfolder of your custom install to the PATH environment variable. See the
first link in the Useful Resources section for details.

Basic Install (without language bindings)

Run the following:

cmake ../
ccmake . # optional, to change install path or other configuration settings
make
make install

Building HELICS with python support

Run the following:

cmake -DBUILD_PYTHON_INTERFACE=ON -DCMAKE_INSTALL_PREFIX=$HOME/local/helics-main/ ..
make -j8
make install

Add the following to your ~/.bashrc file.

export PYTHONPATH=$HOME/local/helics-main/python:$PYTHONPATH

Building HELICS with MATLAB support

To install HELICS with MATLAB support, you will need to add run cmake with the -DBUILD_MATLAB_INTERFACE=ON option.

The important thing to note is that the MATLAB binaries are in the PATH.
Specifically, mex must be available in the PATH.

Note: To check if mex is in the PATH, type which mex and see if it returns a PATH to the mex compiler.

If it does not, you should install MATLAB and add the path to all the MATLAB binaries to your PATH.

export PATH="/Applications/MATLAB_R2017b.app/bin/:$PATH"

git clone https://github.com/GMLC-TDC/HELICS
cd HELICS
mkdir build-osx
cd build-osx
cmake -DBUILD_MATLAB_INTERFACE=ON -DCMAKE_INSTALL_PREFIX=$HOME/local/helics-main/ ..
make -j8
make install

Building HELICS MATLAB support manually

If you have changed the C-interface and want to regenerate the SWIG MATLAB bindings, you will need to use a custom version of SWIG to build the MATLAB interface.
To do that, you can follow the following instructions.

	Install SWIG with MATLAB [https://github.com/jaeandersson/swig/]

	./configure --prefix=$HOME/local/swig_install; make; make install;

	Ensure that SWIG and MATLAB are in the PATH

The below generates the MATLAB interface using SWIG.

cd ~/GitRepos/GMLC-TDC/HELICS/interfaces/
mkdir matlab
swig -I../src/helics/shared_api_library -outdir ./matlab -matlab ./helics.i
mv helics_wrap.cxx matlab/helicsMEX.cxx

You can copy these files into the respective HELICS/interfaces/matlab/ folder and run the cmake command above.
Alternatively, you wish to build the MATLAB interface without using CMake, and you can do the following.

cd ~/GitRepos/GMLC-TDC/HELICS/interfaces/
mex -I../src/helics/shared_api_library ./matlab/helics_wrap.cxx -lhelicsSharedLib -L/path/to/helics_install/lib/helics/
mv helicsMEX.* matlab/

You will need HELICS installed correctly before the above can be run successfully.

Building HELICS using gcc and python

Firstly, you’ll need gcc. You can brew install gcc. Depending on the version of gcc you’ll need to modify the following instructions slightly. These instructions are for gcc-8.2.0.

First you will need to build boost using gcc from source. Download the latest version of boost from the
boost.org website.
In the following example we are doing to use boost v1.69.0 [http://www.boost.org/users/history/version_1_69_0.html]
Keep in mind that your cmake version should be newer than the boost version, so if you have an older cmake you may want an older boost version. Alternatively, you can choose to upgrade your version of cmake as well.

Unzip the folder boost_1_69_0 to any location, for example Downloads.

$ cd ~/Downloads/boost_1_69_0
$./bootstrap.sh --prefix=/ --prefix=$HOME/local/boost-gcc-1.69.0

Open project-config.jam and changes the lines as follows:

Compiler configuration. This definition will be used unless
you already have defined some toolsets in your user-config.jam
file.
if ! darwin in [feature.values <toolset>]
{
 # using darwin ;
}

project : default-build <toolset>darwin ;

using gcc : 8.2 : /usr/local/bin/g++-8 ;

$./b2
$./b2 install
$ # OR
$./bjam cxxflags='-fPIC' cflags='-fPIC' -a link=static install # For static linking

This will install boost in the ~/local/boost-gcc-1.69.0 folder

Next, you will need to build HELICS and tell it what the BOOST_ROOT is.

$ cmake -DCMAKE_INSTALL_PREFIX="$HOME/local/helics-gcc-X.X.X/" -DBOOST_ROOT="$HOME/local/boost-gcc-1.69.0" -DBUILD_PYTHON_INTERFACE=ON -DCMAKE_C_COMPILER=/usr/local/Cellar/gcc/8.2.0/bin/gcc-8 -DCMAKE_CXX_COMPILER=/usr/local/Cellar/gcc/8.2.0/bin/g++-8 ../
$ make clean; make -j 4; make install

Testing HELICS

Basic test (without language bindings)

A quick test is to double check the versions of the HELICS player and
recorder:

cd /path/to/helics_install/bin

$ helics_player --version
x.x.x (20XX-XX-XX)

$ helics_recorder --version
x.x.x (20XX-XX-XX)

Testing HELICS with python support

If you open a interactive Python session and import helics, you should be able to get the version of helics and an output that is similar to the following.

$ ipython
Python 3.6.4 |Anaconda, Inc.| (default, Jan 16 2018, 12:04:33)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.2.1 -- An enhanced Interactive Python. Type '?' for help.

In [1]: import helics

In [2]: helics.helicsGetVersion()
Out[2]: 'x.x.x (20XX-XX-XX)'

Testing HELICS with MATLAB support

To run the MATLAB HELICS extension, one would have to load the helicsSharedLib in the MATLAB file.
This is run by the helicsStartup function in the generated MATLAB files.
You can test this by opening MATLAB from the terminal or using the icon.

/Applications/MATLAB_R2017b.app/bin/matlab -nodesktop -nosplash -nojvm

and running

>> helicsStartup

Note: See Helics issue #763 [https://github.com/GMLC-TDC/HELICS/issues/763/], if your installation doesn’t point the dylib to the correct location.

You can run the following in two separate windows to test an example from the following repository:

git clone https://github.com/GMLC-TDC/HELICS-examples

Run the following in one MATLAB instance

matlab -nodesktop -nosplash
cd ~/GitRepos/GMLC-TDC/HELICS-examples/matlab
pireceiver

Run the following in a separate MATLAB instance.

matlab -nodesktop -nosplash
cd ~/GitRepos/GMLC-TDC/HELICS-examples/matlab
pisender

Linux Installations

Ubuntu Installation

Requirements

	Ubuntu 16 or newer

	C++14 compiler

	CMake 3.4 or newer

	Gcc 4.9 or newer (GCC 7.3.1 has a bug and won’t work)

	git

	Boost 1.58 or newer

	ZeroMQ 4.1.4 or newer (if ZeroMQ support is needed)

	MPI-2 implementation (if MPI support is needed)

Setup

Note: Keep in mind that your CMake version should be newer than the boost version. If you have an older CMake, you may want an older boost version. Alternatively, you can choose to upgrade your version of CMake.

To set up your environment:

	Install dependencies using apt-get.

sudo apt-get install libboost-dev
sudo apt-get install libzmq5-dev

As an alternative, you can use vcpkg [https://github.com/microsoft/vcpkg#getting-started] – it is slower
because it builds all dependencies from source but could have newer versions of dependencies than apt-get.
To use it, follow the vcpkg getting started directions to install vcpkg and then run cmake using
-DCMAKE_TOOLCHAIN_FILE=[path to vcpkg]/scripts/buildsystems/vcpkg.cmake, or by setting the environment
variable VCPKG_ROOT=[path to vcpkg] prior to running cmake.

	Make sure CMake and git are available in the Command Prompt. If they aren’t, add them to the system PATH variable.

Getting and building from source:

	Use git clone to to check out a copy of HELICS.

	Create a build folder. Run CMake and give it the path that HELICS was checked out into.

	Run “make”.

Notes for Ubuntu

Building with GCC 4.9 and 5.X on Ubuntu requires some additional flags due to the way Ubuntu builds those compilers
add -DCMake_CXX_FLAGS="-D_GLIBCXX_USE_C99 -D_GLIBCXX_USE_C99_MATH" to make it work.
If you built the compilers from source this may not be required.

git clone https://github.com/GMLC-TDC/HELICS
cd HELICS
mkdir build
cd build
cmake ../
the options can be modified by altering the CmakeCache.txt file or by using ccmake command to edit them
the cmake-gui will also work to graphically edit the configuration options.
cmake . # optional, to change install path or other configuration settings if changed
make
make install

Testing

A quick test is to double check the versions of the HELICS player and recorder:

cd /path/to/helics_install/bin

$ helics_player --version
x.x.x (20XX-XX-XX)

$ helics_recorder --version
x.x.x (20XX-XX-XX)

Building HELICS with python support

Run the following:

$ sudo apt-get install python3-dev
$ CMake -DBUILD_PYTHON_INTERFACE=ON -DCMake_INSTALL_PREFIX=~/.local/helics-X.X.X/ ..
$ make -j8
$ make install

Add the following to your ~/.bashrc file.

export PYTHONPATH=~/.local/helics-X.X.X/python:$PYTHONPATH
export PATH=~/.local/bin:$PATH

Testing HELICS with python support

If you open a interactive Python session and import HELICS, you should be able to get the version of helics and an output that is similar to the following.

$ ipython
Python 3.6.4 |Anaconda, Inc.| (default, Jan 16 2018, 12:04:33)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.2.1 -- An enhanced Interactive Python. Type '?' for help.

In [1]: import helics

In [2]: helics.helicsGetVersion()
Out[2]: 'x.x.x (20XX-XX-XX)'

A few Specialized Platforms

The HELICS build supports a few specialized platforms, more will be added as needed. Generally the build requirements are automatically detected but that is not always possible. So a system configuration can be specified in the HELICS_BUILD_CONFIGURATION variable of CMake.

Raspbery PI

To build on Raspberry PI system using Raspbian use HELICS_BUILD_CONFIGURATION=PI This will add a few required libraries to the build so it works without other configuration. Otherwise it is also possible to build using -DCMAKE_CXX_FLAGS=-latomic

Docker

Requirements

	Docker 17.05 or higher

Dockerfile

This Dockerfile will build and install HELICS in Ubuntu 18.04 with
Python support.

FROM ubuntu:18.04 as builder

RUN apt update && apt install -y \
 libboost-dev \
 libboost-filesystem-dev \
 libboost-program-options-dev \
 libboost-test-dev \
 libzmq5-dev python3-dev \
 build-essential swig cmake git

WORKDIR /root/develop

RUN git clone https://github.com/GMLC-TDC/HELICS.git helics

WORKDIR /root/develop/helics/build

RUN cmake \
 -DBUILD_PYTHON_INTERFACE=ON \
 -DPYTHON_INCLUDE_DIR=/usr/include/python3.6/ \
 -DPYTHON_LIBRARY=/usr/lib/x86_64-linux-gnu/libpython3.6m.so \
 -DCMAKE_INSTALL_PREFIX=/helics \
 ..
RUN make -j8 && make install

FROM ubuntu:18.04

RUN apt update && apt install -y --no-install-recommends \
 libboost-filesystem1.65.1 libboost-program-options1.65.1 \
 libboost-test1.65.1 libzmq5

COPY --from=builder /helics /usr/local/

ENV PYTHONPATH /usr/local/python

Python must be installed after the PYTHONPATH is set above for it to
recognize and import libhelicsSharedLib.so.
RUN apt install -y --no-install-recommends python3-dev \
 && rm -rf /var/lib/apt/lists/*

CMD ["python3", "-c", "import helics; print(helics.helicsGetVersion())"]

Build

To build the Docker image, run the following from the directory
containing the Dockerfile:

$ docker build -t helics .

Run

To run the Docker image as a container, run the following:

$ docker run -it --rm helics

Doing so should print the version and exit.

HELICS with language bindings support

HELICS with Python3

Run the following:

$ cmake -DBUILD_PYTHON_INTERFACE=ON -DCMAKE_INSTALL_PREFIX=/Users/$(whoami)/local/helics-x.x.x/ ..
$ make -j8
$ make install

Add the following to your ~/.bashrc file.

export PYTHONPATH=/Users/$(whoami)/local/helics-x.x.x/python:$PYTHONPATH

If you open a interactive Python session and import helics, you should be able to get the version of helics and an output that is similar to the following.

$ ipython
Python 3.6.4 |Anaconda, Inc.| (default, Jan 16 2018, 12:04:33)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.2.1 -- An enhanced Interactive Python. Type '?' for help.

In [1]: import helics

In [2]: helics.helicsGetVersion()
Out[2]: 'x.x.x (XXXX-XX-XX)'

Note: If you already have a HELICS installation with the C shared library, it is possible to build the Python3 interface
using the interfaces/python folder as a standalone CMake project (“e.g. cmake <path to interfaces/python folder>”). This can be much faster than rebuilding HELICS.

HELICS with Python2

Run the following:

$ cmake -DBUILD_PYTHON2_INTERFACE=ON -DPYTHON_INCLUDE_DIR=$(python2-config --prefix)/include/python2.7/ -DPYTHON_LIBRARY=$(python2-config --prefix)/lib/python2.7/libpython2.7.dylib -DCMAKE_INSTALL_PREFIX=/Users/$(whoami)/local/helics-x.x.x/ ..
$ make -j8
$ make install

Add the following to your ~/.bashrc file.

export PYTHONPATH=/Users/$(whoami)/local/helics-x.x.x/python:$PYTHONPATH

If you open a interactive Python session and import helics, you should be able to get the version of helics and an output that is similar to the following.

$ ipython
Python 2.7.11 |Anaconda, Inc.| (default, Jan 16 2018, 12:04:33)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.2.1 -- An enhanced Interactive Python. Type '?' for help.

In [1]: import helics

In [2]: helics.helicsGetVersion()
Out[2]: 'x.x.x (20XX-XX-XX)'

HELICS with GCC and Python3

First you will need to build boost using gcc from source. Download
boost [http://www.boost.org/users/history/version_1_70_0.html] from the
boost.org website.

Unzip the folder boost_1_70_0 to any location, for example Downloads.

$ cd ~/Downloads/boost_1_70_0
$./bootstrap.sh --with-python=/Users/$USER/miniconda3/python3 --prefix=/usr/local/Cellar/gcc/7.2.0_1/bin/gcc-7
$./bootstrap.sh --prefix=/ --prefix=/Users/$USER/local/boost-gcc-1.70
$./b2
$./b2 install
$ # OR
$./bjam cxxflags='-fPIC' cflags='-fPIC' -a link=static install # For static linking

This will install boost in the ~/local/boost-gcc-1.70 folder

Next, you will need to build HELICS and tell it what the BOOST_ROOT is.

$ cmake -DCMAKE_INSTALL_PREFIX="/Users/$USER/local/helics-gcc-x.x.x/" -DBOOST_ROOT="/Users/$USER/local/boost-gcc-1.64" -DBUILD_PYTHON_INTERFACE=ON -DPYTHON_LIBRARY=$(python3-config --prefix)/lib/libpython3.6m.dylib -DPYTHON_INCLUDE_DIR=$(python3-config --prefix)/include/python3.6m -DCMAKE_C_COMPILER=/usr/local/Cellar/gcc/7.2.0_1/bin/gcc-7 -DCMAKE_CXX_COMPILER=/usr/local/Cellar/gcc/7.2.0_1/bin/g++-7 ../
$ make clean; make -j 4; make install

HELICS with MATLAB

To install HELICS with MATLAB support, you will need to add BUILD_MATLAB_INTERFACE=ON.

git clone https://github.com/GMLC-TDC/HELICS
cd HELICS
mkdir build
cd build
cmake -DBUILD_MATLAB_INTERFACE=ON -DCMAKE_INSTALL_PREFIX=/Users/$(whoami)/local/helics-develop/ ..
make -j8
make install

On windows using visual studio the command line cmake would look like

cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX="C:\local\helics-develop" -DENABLE_SWIG=OFF -DBUILD_MATLAB_INTERFACE=ON -G "Visual Studio 15 2017 Win64" ..

cmake --build . --config Release --target INSTALL

Cmake will search for the MATLAB executable and execute a mex command inside MATLAB to build the interface.
For this operation to succeed MATLAB must be available and mex must be setup to use an appropriate C compiler. The setup is only required once for each MATLAB installation and does not need to repeated unless the compiler changes. From within MATLAB run

>>mex -setup

and follow the prompted instructions.

Reconstructing the files requires a specific version of SWIG with MATLAB support. If swig is not used then adding -DENABLE_SWIG=OFF to the cmake command will bypass swig and use the included interface files directly. If any modifications to the C library were made then swig must be used to regenerate the files appropriately, otherwise the existing files can be used. The CMAKE scripts will detect if the swig is the appropriate version and act accordingly.

Add the install directory path to the MATLAB files to your PATH. This can be the system path, or the MATLAB path through the addpath command or the graphical equivalent

>> addpath('path/to/helics/install/matlab')

Now in MATLAB, run the following:

helicsStartup
display(helics.helicsGetVersion())

[image:]

The helics Startup usually isn’t required on Windows systems. Alternatively, you can load the HELICS library manually, depending on which operating system you use.

loadlibrary(GetFullPath('path/to/helics/install/libhelicsSharedLib.dylib'));
loadlibrary(GetFullPath('path/to/helics/install/libhelicsSharedLib.so'));
loadlibrary(GetFullPath('C:\path\to\helics\install\helicsSharedLib.dll'));

display(helics.helicsGetVersion())

This should print the version number of HELICS.

Optional

If you have changed the C-interface, and want to regenerate the SWIG MATLAB bindings, you will need to use a custom version of SWIG to build the MATLAB interface.
To do that, you can follow the following instructions.

	Install SWIG with MATLAB [https://github.com/jaeandersson/swig/]

	./configure --prefix=/Users/$USER/local/swig_install; make; make install;

	Ensure that SWIG and MATLAB are in the PATH or specify them through the cmake-gui or ccmake. Then make sure swig is enabled and the Matlab files will be generated by SWIG and compiled through MATLAB.

Alternatively, you wish to build the MATLAB interface without using CMake, and you can do the following.

cd ~/GitRepos/GMLC-TDC/HELICS/swig/
mex -I../src/helics/shared_api_library ./matlab/helics_wrap.cxx -lhelicsSharedLib -L/path/to/helics_install/lib/helics/
mv helicsMEX.* matlab/

The above instructions will have to be modified slightly to support Windows, CMAKE is the recommended process for creating the MATLAB interface.

HELICS with Octave

To install HELICS with Octave support, you will need to add BUILD_OCTAVE_INTERFACE=ON. Swig is required to build the Octave interface from source; it can be installed via package managers such as apt on Ubuntu or chocolatey [https://chocolatey.org/packages?q=swig] on Windows, Octave can also be installed in this manner.

git clone https://github.com/GMLC-TDC/HELICS
cd HELICS
mkdir build
cd build
cmake -DBUILD_OCTAVE_INTERFACE=ON -DCMAKE_INSTALL_PREFIX=/Users/$(whoami)/local/helics-develop/ ..
make -j8
make install

add the octave folder in the install directory to the octave path

>>helics
>> helicsGetVersion()
ans = x.x.x (20XX-XX-XX)

Notes

Octave 4.2 will require swig 3.0.12, Octave 4.4 and 5.0 and higher will require swig 4.0 or higher. The Octave interface has built and run smoothly on Linux systems and on the Windows system with Octave 5.0 installed through Chocolatey. There is a regular CI test that builds and tests the interface on Octave 4.2.

Linking with the HELICS Library

Once HELICS is built or installed it needs to be integrated into a project.

Language bindings

If the project is in Python, Matlab, Java, C#, Octave, or Julia, the language binding specific to that language is the best bet.

C based project

The C based shared library is the way to go. Either link with helicsSharedLib.lib/so/dylib and add the include directory containing a helics folder or link the CMake target HELICS::helicsSharedLib.

C++98 or C++03

Then linking with the C shared library and using the C++98 header only wrapper is the most appropriate choice. The CMake target HELICS::helicsCpp98 can be used if using CMake.

C++14

If you are using C++14 and can install or generate the C++ shared library and make sure they are built with identical compilations configurations it is possible to link with the C++ shared library generated by HELICS. This can provide a richer interface and potentially slightly faster interaction.
This can be done in a couple ways. If the project is CMake based then HELICS will install a configuration file that generates the targets for the HELICS::helics-shared library with the appropriate information for linking, this is the simplest approach. Unlike the C shared library, the C++ shared library requires the importing program to have the same compilation libraries since the library does not export std library symbols, or other symbols defined solely in header files, so those must have the same interpretation inside and out of the library for this to work. If some of the extensions available in the helics::apps are needed then the HELICS::helics-apps-shared target is also appropriate.

If you not using cmake then link against the helics-shared.lib/so/dylib as appropriate for the operating system and include the headers directory. Also advisable (though not strictly necessary is to define HELICS_SHARED_LIBRARY as part of the compilation before including some headers). The apps library is helics-apps-shared.lib/so/dylib and the corresponding dll/so/dylib should be on the path or in the same directory for windows or added to the RPATH on other operating systems.

If you are using CMake and want to use static libraries or use the apps library as a static library then HELICS supports building as a subproject and linking the targets HELICS::apps or HELICS::application-api.

Troubleshooting shared library errors on Windows

If you encounter an error along the lines of DLL load failed: The specified module could not be found when attempting to use the C shared library, it is likely a required system dependency is missing. You can determine which DLL it is unable to find using a tool like https://github.com/lucasg/Dependencies to show which dependencies were not found when attempting to open the helics C shared library DLL. It is fine if it shows it can’t find WS2_32.dll, but all other DLLs should be found.
The most likely to be missing is vcruntime140_1.dll, which can be fixed by downloading the latest Visual C++ Redistributable from https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads and installing it.

Summary

	For Python(2,3), Java, Matlab, C#, Octave, Julia - use the defined interface

	For C use the C shared library

	For most C++ use the C++98 Wrapper to the C shared library

	For C++14 in common build configurations use the C shared library or the C++ shared library from the installers or build it yourself to ensure library compatibility.

	For specific C++ applications desiring static builds and using CMake, use HELICS as a subproject in CMake (the main use is some helics extensions, but other applications can use it as well)

	For specific C++ applications with particular build considerations or flags use HELICS as a subproject and link the static or shared C++ Libraries.

	For other languages - work with swig or use the foreign language capabilities of the language to import the C shared library.

HELICS CMake options

Main Options

	CMake_INSTALL_PREFIX: CMake variable listing where to install the files

	HELICS_BUILD_APP_LIBRARY : [Default=ON] Tell HELICS to build the app Library

	HELICS_BUILD_APP_EXECUTABLES : [Default=ON] Build some executables associated with the apps

	HELICS_BUILD_BENCHMARKS : [Default=OFF] Build some timing benchmarks associated with HELICS

	HELICS_BUILD_CXX_SHARED_LIB : [Default=OFF] Build C++ shared libraries of the Application API C++ interface to HELICS and if HELICS_BUILD_APP_LIBRARY is also enabled another C++ shared library with the APP library

	HELICS_BUILD_EXAMPLES : [Default=OFF] Build a few select examples using HELICS, this is mostly for testing purposes. The main examples repo is here [https://github.com/GMLC-TDC/HELICS-Examples]

	HELICS_BUILD_TESTS : [Default=OFF] Build the HELICS unit and system test executables.

	HELICS_ENABLE_LOGGING : [Default=ON] Enable debug and higher levels of logging, if this is turned off that capability is completely removed from HELICS

	HELICS_ENABLE_PACKAGE_BUILD : [Default=OFF] Enable the generation of some installer packages for HELICS

	HELICS_GENERATE_DOXYGEN_DOC : [Default=OFF] Generate doxygen documentation for HELICS

	HELICS_WITH_CMAKE_PACKAGE : [Default=ON] Generate a HELICSConfig.cmake file on install for loading into other libraries

	BUILD_OCTAVE_INTERACE : [Default=OFF] Build the HELICS Octave Interface

	BUILD_PYTHON_INTERACE : [Default=OFF] Build the HELICS Python3 Interface

	BUILD_PYTHON2_INTERACE : [Default=OFF] Build the HELICS Python2 Interface (can be used at the same time as BUILD_PYTHON_INTERFACE)

	BUILD_JAVA_INTERACE : [Default=OFF] Build the HELICS Java Interface

	BUILD_MATLAB_INTERACE : [Default=OFF] Build the HELICS Matlab Interface

	BUILD_CSHARP_INTERACE : [Default=OFF] Build the HELICS C# Interface, NOTE: Only available for CMake 3.8 or higher.

	CMAKE_CXX_STANDARD : Specify the C++ standard to use in building, HELICS requires 14 or higher which will be used if nothing is specified, HELICS 3.0 will require 17 or higher.

	HELICS_INSTALL :[Default=ON] If set to off HELICS will not generate any install instructions

NOTE: Most HELICS options are prefixed with HELICS_ to separate them from other libraries so HELICS can be used cleanly as a subproject. The BUILD_XXX_INTERFACE options have not been changed since that would be a large change in an intermediate version, but they will be changed in HELICS 3.0 to HELICS_BUILD_XXXX_INTERFACE to complete the prefixing change for consistency across the library.

Advanced Options

There are several different additional options available to configure HELICS for particular situations, most of which are not needed for general use and the default options should suffice.

HELICS Configuration options

These options effect the configuration of HELICS itself and how/what gets built into the HELICS core libraries

	ENABLE_ZMQ_CORE : [Default=ON] Enable the HELICS ZeroMQ related core types

	ENABLE_TCP_CORE : [Default=ON] Enable the HELICS TCPIP related core types

	ENABLE_UDP_CORE : [Default=ON] Enable the HELICS UDP core type

	ENABLE_IPC_CORE : [Default=ON] Enable the HELICS interprocess shared memory related core types

	ENABLE_TEST_CORE : [Default=OFF] Enable the HELICS in process core type with some additional features for tests, required and enabled if the HELICS_BUILD_TESTS option is enabled

	ENABLE_INPROC_CORE : [Default=ON] Enable the HELICS in process core type, required if HELICS_BUILD_BENCHMARKS is on

	ENABLE_MPI_CORE : [Default=OFF] Enable the HELICS Message Passing interface(MPI) related core types, most commonly used for High performance computing application (HPC)

HELICS logging Options

	HELICS_ENABLE_TRACE_LOGGING : [Default=ON] Enable trace level of logging inside HELICS, if this is turned off that capability is completely removed from HELICS

	HELICS_ENABLE_DEBUG_LOGGING : [Default=ON] Enable debug levels of logging inside HELICS, if this is turned off that capability is completely removed from HELICS

Build configuration Options

Options effect the connection of libraries used in HELICS and how they are linked.

	HELICS_DISABLE_BOOST : [Default=OFF] Completely turn off searching and inclusion of boost libraries. This will disable the IPC core, disable the webserver and few other features, possibly more in the future.

	HELICS_DISABLE_WEBSERVER : [Default=OFF] Disable building the webserver part of the helics_broker_server and helics_broker. The webserver requires boost 1.70 or higher and HELICS_DISABLE_BOOST will take precedence.

	HELICS_DISABLE_ASIO : [Default=OFF] Completely turn off inclusion of ASIO libraries. This will disable all TCP and UDP cores, disable real time mode for HELICS, and disable all timeout features for the Library so use with caution.

	HELICS_ENABLE_SUBMODULE_UPDATE : [Default=ON] Enable CMake to automatically download the submodules and update them if necessary

	HELICS_ENABLE_ERROR_ON_WARNING :[Default=OFF] Turns on Werror or equivalent, probably not useful for normal activity, There isn’t many warnings but left in to allow the possibility

	HELICS_ENABLE_EXTRA_COMPILER_WARNINGS : [Default=ON] Turn on higher levels of warnings in the compilers, can be turned off if you didn’t need or want the warning checks.

	STATIC_STANDARD_LIB: [Default=””] link the standard library as a static library for no additional C++ system dependencies (recognized values are default, static, and dynamic, anything else is treated the same as default)

	HELICS_ENABLE_SWIG: [Default=OFF] Conditional option if BUILD_MATLAB_INTERACE or BUILD_PYTHON_INTERFACE or BUILD_JAVA_INTERACE is selected and no other option that requires swig is used. This enables swig usage in cases where it would not otherwise be necessary.

	HELICS_USE_NEW_PYTHON_FIND: [Default=OFF] If python is required, this option can be set to use newer FindPython routines from CMake, if CMake version in use is >=3.12, This does change the variables that need to be set to link to a specific python, but can be helpful in some situations with newer python versions.

	HELICS_ENABLE_GIT_HOOKS: install a git hook to check clang format before a push

	Boost_NO_BOOST_CMAKE: [Default=OFF] This is an option related to the Boost find module, but is occasionally needed if a specific version of boost is desired and there is a system copy of BoostConfig.cmake. So if an incorrect version of boost is being found even when BOOST_ROOT is being specified this option might need to be set to ON.

	HELICS_BUILD_CONFIGURATION: A string containing a specialized build configuration if any. The only platform this is currently used on is for building on a Raspberry PI system, in which case this should be set to “PI”.

ZeroMQ related Options

	HELICS_USE_SYSTEM_ZEROMQ_ONLY: [Default=OFF] Only find Zeromq through the system libraries, never attempt a local build.

	HELICS_USE_ZMQ_STATIC_LIBRARY: [Default=OFF (unless only libzmq-static found)] Build and link Zeromq using a static library. (NOTE: This has licensing implications if the resulting binary is distributed)

	HELICS_ZMQ_SUBPROJECT: [Default=ON (MSVC) OFF(otherwise)] Allow ZeroMQ to be built as a subproject if a system library is not found

	HELICS_ZMQ_FORCE_SUBPROJECT: [Default=OFF] Force ZMQ to be built and linked as a subproject.

	ZeroMQ_INSTALL_PATH: Can be used to specify a path to ZeroMQ for inclusion.

Options related to helics tests and CI configurations

	HELICS_TEST_CODE_COVERAGE :[Default=OFF] Turn on code coverage testing, enables additional linkage and options inside HELICS for coverage testing, mainly useful inside the CI or for testing.

	HELICS_ENABLE_SUBPROJECT_TESTS: [Default=OFF] Turn on some additional tests for using HELICS as a subproject, mainly used in some of the CI testing to make sure HELICS works as a subproject.

	HELICS_ENABLE_CLANG_TOOLS: [Default=OFF] Enables some helper targets for using clang-tidy and clang-format.

Hidden Options

There are a few options in the CMake system that are not visible in the GUI they mainly deal with particular situations related to release, testing, benchmarks, and code generation and should not be normally used. They are all default off unless otherwise noted.

	HELICS_SWIG_GENERATE_INTERFACE_FILES_ONLY : Use swig to generate the interface files for the different languages but don’t compile them.

	HELICS_OVERWRITE_INTERFACE_FILES : Instruct CMake to take the generated files, and overwrite the existing interface files for the given language, only applies to python, Matlab, and Java. This is used in the generation of the interface files for releases and the git repo. It is only active is HELICS_SWIG_GENERATE_INTERFACE_FILES_ONLY is enabled.

	HELICS_DISABLE_SYSTEM_CALL_TESTS : There are a few test that execute system calls, which could be problematic to compile or execute on certain platforms. This option removes those tests from compilation.

	INSTALL_SYSTEM_LIBRARIES : Install system libraries with the installation, mainly useful for making a complete installer package with all needed libraries included.

	HELICS_INSTALL_PACKAGE_TESTS : Set the find_package tests to only look for HELICS in the system install paths, and enable the package-config-tests

	HELICS_DISABLE_GIT_OPERATIONS : will turn off any of the helper tools that require git, this is useful in a couple cases for building packages and other situations where updates shouldn’t be checked and no modifications should be made.

	HELICS_SKIP_ZMQ_INSTALL: This is only relevant if ZMQ is built as part of the compilation process, but it skips the installation of zmq as part of HELICS install in that case.

	HELICS_BENCHMARK_SHIFT_FACTOR: For running the benchmarks this shift factor can be used to scale the number of federates used for the benchmark tests. If used it is required to be a number and is power of 2 shift from nominal values. For example for a small system a shift factor of -1 or -2 might be appropriate for the benchmarks not to take too long. The default for systems with 4 or fewer cores is -1 and 0 for larger compute systems. For small 2 core systems a value of -2 might be appropriate. For some very large systems a bigger value might be able to be used.

Introduction

	Hello World

	Python Example

	Java Minimal Example

	MATLAB

	Terminology

	Types of Federates

	Value vs Message

	Filters

	Interfacing with HELICS

	Endpoints

	Inputs

	Publications

Hello World

Now that you have HELICS installed, you are ready to create your first
HELICS federation. Let’s create a simple Hello, World example with 2
federates.

Note: This tutorial assumes basic familiarity with the command line. The
HELICS co-simulation framework itself makes no specific demands about
your editing, tooling, or where your code lives. Feel free to use
whatever editor or IDE you are comfortable with.

Create a federations directory

Linux and Mac:

$ mkdir -p ~/federations/hello_world
$ cd ~/federations/hello_world

Windows CMD:

> mkdir %USERPROFILE%\federations
> cd %USERPROFILE%\federations
> mkdir hello_world
> cd hello_world

Writing your first federation

Next, make a new source file and call it hello_world_sender.c. Copy
the contents from
hello_world_sender.c [https://github.com/GMLC-TDC/HELICS-Examples/blob/72c9d38e/c/hello_world/hello_world_sender.c]
and paste it into the file.

Next, create a new source file and call it hello_world_receiver.c.
Copy the contents from
hello_world_receiver.c [https://github.com/GMLC-TDC/HELICS-Examples/blob/72c9d38e/c/hello_world/hello_world_receiver.c]
and paste it into the file.

We will go through in more detail the contents of these files. For now,
save the files and open two terminals.

Compiling the federates

To compile the federates, you can use the following commands.

Linux and Mac:

$ cc hello_world_sender.c -o ./hello_world_sender -lhelicsSharedLib
$ cc hello_world_receiver.c -o ./hello_world_receiver -lhelicsSharedLib

You may need to include additional include paths and library paths in
the above command.

Running a federation

Linux and Mac:

Next, open three terminals. In the first terminal, run the following
command.

$./helics_broker -f2

In the second terminal, run the following command.

$./hello_world_sender

In a third terminal, run the following command.

$./hello_world_receiver

You should see Hello, World printed out in the terminal where you ran
the hello_world_receiver.

For a guide to run this example in Visual Studio go to this link:
hello-world-VS.

Anatomy of a HELICS federation

Now, let’s go over what just happened in the hello_world_sender.c part
of the “Hello, World” program in detail.

The following block creates a ValueFederate. We will discuss what
FederateInfo is and what a ValueFederate is, along with other types
of Federates in more detail in other documents.

fedinfo = helicsCreateFederateInfo ();
helicsFederateInfoSetCoreTypeFromString (fedinfo,"zmq",&err);
helicsFederateInfoSetCoreInitString (fedinfo,fedinitstring,&err);
helicsFederateInfoSetTimeProperty (fedinfo,helicsGetPropertyIndex("period"), 1.0,&err);
vfed = helicsCreateValueFederate ("hello_world_sender",fedinfo,&err);

The following registers a global publication.

pub = helicsFederateRegisterGlobalPublication (vfed, "hello", helics_data_type_string, "",&err);

The following ensures that the federation has entered execution mode.
If helicsFederateEnterInitializingMode is not included the call to
helicsFederateEnterExecutingMode will automatically make the call in the background.

helicsFederateEnterInitializingMode (vfed,&err);
helicsFederateEnterExecutingMode (vfed,&err);

These functions publish a String and make a RequestTime function call to
advance time in the simulation.

helicsPublicationPublishString(pub, "Hello, World",&err);
currenttime=helicsFederateRequestTime(vfed, 1.0, &err);

And finally, these functions free the Federate and close the HELICS library.

helicsFederateFinalize (vfed,&err);
helicsFederateFree (vfed);
helicsCloseLibrary ();

You can see that the hello_world_receiver.c is also very similar, but
uses a Subscription instead. A snippet of the code is shown below.

fedinfo = helicsCreateFederateInfo ();
helicsFederateInfoSetCoreTypeFromString (fedinfo, "zmq",&err);
helicsFederateInfoSetCoreInitString (fedinfo, fedinitstring,&err);
helicsFederateInfoSetTimeProperty (fedinfo,helics_property_time_period, 1.0,&err);

vfed = helicsCreateValueFederate ("hello_world_receiver",fedinfo,&err);
sub = helicsFederateRegisterSubscription (vfed, "hello",NULL,&err);

helicsFederateEnterInitializingMode (vfed,&err);
helicsFederateEnterExecutingMode (vfed,&err);

/** request that helics grant the federate a time of 1.0
 the new time will be returned in currentime*/
currenttime=helicsFederateRequestTime (vfed, 1.0,&err);

isUpdated = helicsInputIsUpdated (sub);
helicsInputGetString (sub, value, 128,&actualLen,&err)
printf("%s\n", value);

helicsFederateFinalize (vfed,&err);
helicsFederateFree (vfed);
helicsCloseLibrary ();

A note on the &err term
Many functions in the C API take a pointer to a helics_error structure. This can be created by a call to helicsErrorInitialize and can be reset by helicsErrorClear(helics_error *err). If an error occurs during the execution of a function or some inputs were invalid an error code in the helics_error structure will be set and a message included. For all functions if an error structure that already has an error in place is passed as an argument the function short circuits and does nothing. So checks can be done after a sequence of calls if desired with no worry about side effects. In the C++98 API an error triggers an exception, and in the base C++ API these originate as exceptions.

Python Example

In the previous section, we covered the basics of a HELICS federate and how you can run multiple federates together to form a federation.
In this section we will look at how to create a federation in Python.
We will create a simple pi-exchange federation in Python with 2 federates.

HELICS Python Setup

Before we run the Python pi-exchange federation, it is necessary to ensure that we have Python installed and that we have the HELICS Python built successfully and correctly on the machine.

We recommend using pip with Python (version 2.7 or 3.5+) or Anaconda3/Miniconda3 to install a copy of the HELICS Python interface, although this should work with most versions of Python if you build the interface yourself using SWIG to generate the Python bindings to the helicsSharedLib shared library.
SWIG claims to be compatible with most Python versions, dating back to Python 2.0. And recommends that for the best results, one should consider using Python 2.3 or newer.

See the Installation instructions page for more information regarding this.

Create a federations directory

Linux and Mac:

$ mkdir -p ~/federations/pi-exchange
$ cd ~/federations/pi-exchange

Windows CMD:

> mkdir %USERPROFILE%\federations
> cd %USERPROFILE%\federations
> mkdir pi-exchange
> cd pi-exchange

Writing the Python federation

Next, make a new source file and call it pisender.py. Copy
the contents from
pisender.py [https://github.com/GMLC-TDC/HELICS-Examples/blob/main/python/pi-exchange/pisender.py]
and paste it into the file.

Next, create a new source file and call it pireceiver.py.
Copy the contents from
pireceiver.py [https://github.com/GMLC-TDC/HELICS-Examples/blob/main/python/pi-exchange/pireceiver.py]
and paste it into the file.

Save the files.

Running a federation

Linux and Mac:

Next, open two terminals. In the first terminal, run the following command.

$ python pisender.py

In a second terminal, run the following command.

$ python pireceiver.py

If done correctly, you should see an output like so:

[image: Python Example]

You should see something like the following in the PI RECEIVER window (2nd one in directions above)

$ python pireceiver.py
PI RECEIVER: Helics version = x.x.x (XX-XX-XX)
PI RECEIVER: Creating Federate Info
PI RECEIVER: Setting Federate Info Name
PI RECEIVER: Setting Federate Info Core Type
PI RECEIVER: Setting Federate Info Init String
PI RECEIVER: Setting Federate Info Time Delta
PI RECEIVER: Setting Federate Info Logging
PI RECEIVER: Creating Value Federate
PI RECEIVER: Value federate created
PI RECEIVER: Subscription registered
PI RECEIVER: Entering execution mode
PI RECEIVER: Current time is 5.0
PI RECEIVER: Received value = 3.142857142857143 at time 5.0 from PI SENDER
PI RECEIVER: Received value = 3.142857142857143 at time 6.0 from PI SENDER
PI RECEIVER: Received value = 3.142857142857143 at time 7.0 from PI SENDER
PI RECEIVER: Received value = 3.142857142857143 at time 8.0 from PI SENDER
PI RECEIVER: Received value = 3.142857142857143 at time 9.0 from PI SENDER
PI RECEIVER: Federate finalized
end of master Object Holder destructor

Corresponding output should appear from the PI SENDER (window 1).

Background: Running a HELICS federation (via low level commands) requires first starting a helics broker and then running the desired set of federates with it. In this case, the pisender starts this broker and then joins as a federate.

Tips

Ensure that the install location is added to your PATH. If you’ve installed to the default system location, you may not need to do this.
To ensure that the Python extension works correctly, you may add the following to your PYTHONPATH. You can do so by pasting the following in your .bashrc file.

export PYTHONPATH="~/local/helics_install/python"

Java Minimal Example

Create a HelloWorld.java file with the following.

import com.java.helics.helics;

public class HelloWorld {

 public static void main(String[] args) {
 System.loadLibrary("JNIhelics");

 System.out.println("HELICS Version: " + helics.helicsGetVersion());
 }

}

Run the following to compile all Java classes. You will first have to create a com/java/helics folder relative to the source folder, and place all the swig generated java files in that folder.

javac com/java/helics/helics.java
javac HelloWorld.java
java -Djava.library.path="/Library/Java/Extensions:/Network/Library/Java/Extensions:/System/Library/Java/Extensions:/usr/lib/java:/path/to/GitRepos/HELICS/build-osx/swig/java/com/java/helics/:." HelloWorld

You should see the output that is similar to the following.

HELICS Version: x.x.x (XX-XX-XX)

creating a jar file.

jar cfv helics.jar com/java/helics/*.java

MATLAB

Prerequisites

	Install SWIG with MATLAB [https://github.com/jaeandersson/swig/]

	./configure --prefix=/Users/$USER/local/swig_install; make; make install;

	Ensure that SWIG and MATLAB are in the PATH

Building HELICS with MATLAB extension

HELICS can be built with the MATLAB extension by enabling the BUILD_MATLAB_INTERFACE option in cmake
HELICS will also need to know the location of swig with MATLAB that was built.

It can also be built without that version of swig using existing files in the repo, but this will not work if there are any library changes.
After installing the mex file will be placed in the matlab folder of the install directory.

Build SWIG MATLAB source

cd ~/GitRepos/GMLC-TDC/HELICS/swig/
mkdir matlab
swig -I../src/helics/shared_api_library -outdir ./matlab -matlab ./helicsMATLAB.i
mv helics_wrap.cxx matlab/helicsMEX.cxx

Compile MATLAB extension

cd ~/GitRepos/GMLC-TDC/HELICS/swig/
mex -I../src/helics/shared_api_library ./matlab/helics_wrap.cxx -lhelicsSharedLib -L/path/to/helics_install/lib/helics/
mv helicsMEX.* matlab/

Test HELICS MATLAB extension

Run the following in two separate windows.

matlab -nodesktop -nosplash
cd ~/GitRepos/GMLC-TDC/HELICS-examples/matlab/pi-exchange
pisender

The pisender starts a broker so it may work slightly better to start that process first.

matlab -nodesktop -nosplash
cd ~/GitRepos/GMLC-TDC/HELICS-examples/matlab/pi-exchange
pireceiver

Terminology

	Federate - An individual simulator that is computing something
interesting and communicating with other simulators

	Core - An object managing the interactions of one or more Federates

	Broker - An object coordinating multiple cores or brokers

	There can be several layers of brokers

	Root Broker – the top broker on the hierarchy

	Last chance router

	Responsible for determining when to enter initialization mode
for the federation

	Federation – the set of all Federates executing together in a single
co-simulation

	Interface - a structure by which a federate can communicate with other federates. Includes Endpoints, Publications, Filters, and Inputs

[image: Example federate hierarchy]

Types of Federates

	Value Federates

	Direct Fixed Connections to other Federates

	Physical values being sent back and forth

	Associated Units

	Message Federates

	Packets of data

	No fixed connections

	For things such as Events, Communication packets, triggers

	Combination Federate (Value+Message Federate)

	While not a separate type Filters are supported on all federate types and could be created on a simple federate that doesn’t otherwise support value or Message interfaces.

Value vs Message

	Publication/Input Values

	Endpoint

	Fixed routes at initialization

	Routes at transmission time

	1 to N relationship (publications) N to 1 relationship for Inputs

	All endpoints are routable - Unless otherwise specified

	Values exist until updated

	Destination specified

	Default values

	Rerouting/modification through filters

	Associated units

	Data exists as singular blobs - No records kept

	No direct request mechanism

	May define a message time - Act as events

Other Notes:

	Endpoints can subscribe to publications to get a message for each data point

	Both can be nameless to be non-routable from outside the defining federate

Filters

	Inline operations that can alter a message or events

	Time Delay (Random or Fixed)

	Packet Translation

	Random Dropping

	Message Cloning / Replication

	Rerouting

	Firewall

	Custom

	Filters are part of the Core, and the effect of a filter is not
limited to the endpoints of local objects

	Filters can have multiple target endpoints, and trigger off either messages sent from an endpoint (source target) or messages received by an endpoint (destination targets)

	Filters can be cloning or non-cloning filters. Cloning filters will operate on a copy of the message and in the simple form just deliver a copy to the specified destination locations. The original message gets delivered as it would have without the filter.

Federation

[image: Federate communication]

Example with delay

[image: Federate communication with a delay filter]

Example with communication system

[image: Federate communication with a communication simulator]

Interfacing with HELICS

The HELICS framework allows other tool developers to add HELICS
components to enable co-simulation. Interfacing with HELICS can be done
using the C++ Application API or the C Shared Library API. Developers
familiar with HELICS and the HELICS Application API can interface with
HELICS using the C++ Application API. HELICS also provides an additional
well defined C API built as a shared library that can be easily interfaced
with from other tools. This C interface also supports easier integration with
tools developed in other languages. Developers can easily integrate
HELICS into their application using the C Shared Library API using FFI.

In addition, the team has leveraged a development tool called SWIG to
build interfaces in the high level programming languages listed below.

	Python (3 and 2)

	MATLAB

	Java

	Octave

	C#

SWIG allows cross platform support, i.e. extensions will work for
Windows, Mac and Linux. The user does not necessarily need to install
SWIG, the extension code is generated by the developers of HELICS and is
only required to be built on the user end. The CMake build process
includes targets for the Python, MATLAB and Java extensions. Other
languages can be supported in the future. If you have a language
requirement, please contact the developers.

Endpoints

Endpoints are interfaces used to pass packetized data blocks (messages) to another federate. These messages can represent communication packets, or events.

Endpoints can have a type which is a user defined string. HELICS currently does not recognize any predefined types, though some conventions may be developed in the future.
An endpoint can send data to any other endpoint in the system. The data consists of raw binary data and optionally a send time.

In the Application API, endpoints can subscribe to publications to receive a message every time the publication publishes a value. They can also define destinations to send data to if no other destination is given.

Messages are delivered first by time order, then federate id number, then handle id, then by order of arrival.

Inputs

Inputs are part of a matching pair with Publications. They are the input side of a federate for data exchange.

The definition consists of a name, a type, and a unit.

The name of an Input is the identifier used for publishers to send data to it. The name can be left empty to generate a nameless subscription that is not addressable from outside the creating federate. There are some wrapper functions that generate a subsciption. This is simply a wrapper for a nameless input and an addTarget call to link to a publication.

Named Inputs can be global or local. The only difference is that local Inputs have the name prepended by the federate name so the global name would be in the form “federateName/inputName” whereas a global input would just have “inputName”

The type of input is represented as an open string but the Application API recognizes several well supported types, including:

	int64

	double

	string

	vector (a series of doubles)

	complex (a pair of doubles)

	vector_complex (a series of complex numbers)

	char

	bool

	time (a HELICS time value)

	named point (a value with a string and a double)

Inputs that just target a single publication (or any for that matter) can leave the type empty and it will take on the type of the publication.
These are all convertible and known to the Application API. The data can be retrieved as any of these types though some are lossy. There are API functions to query the type of the input and the type of the publication that sends it data.

Inputs can add a target which is a Publication. An input can be targeted by multiple publications though the interface for dealing with this is not well developed and will be undergoing development in the coming revisions, currently the latest update in time from any publication is used as the value. Other options will be available in the future.

Publications

Publications are interfaces that send data out of a federate. They are defined through a Value Federate in the Application API.

The definition consists of a name, a type, and a unit.

The name of a publication is the identifier used for subscribers to link to it. The name can be left empty to generate a nameless publication that is not accessible from outside the creating federate. It can still send data out but all links must be specified from inside the creating federate.

Publications can be global or local. The only difference is that local Publications have the name prepended by the federate name so the global name would be like “federateName/publicationName” whereas a global publication would just have “publicationName”

The type of publication is represented as an open string but the Application API recognizes several well supported types, including:

	int64

	double

	string

	vector (a series of doubles)

	complex (a pair of doubles)

	vector_complex (a series of complex numbers)

	char

	bool

	time (a HELICS time value)

	named point (a value with a string and a double)

These are all convertible and known to the Application API but some conversions are lossy, so there is a flag to allow only string matching if that is required.

Publication can add a target which is an Input. A publication can target as many inputs as desired.

User Guide

Co-simulation is a powerful analysis technique that allows simulators of different domains to interact through the course of the simulation, typically by dynamically exchanging values that define boundary conditions for other simulators. HELICS is a co-simulation platform that has been designed to allow integration of these simulators across a variety of computation platforms and languages. HELICS has been designed with power system simulation in mind (GridLAB-D [https://github.com/gridlab-d/gridlab-d], GridDyn [https://github.com/LLNL/GridDyn], MATPOWER [https://github.com/GMLC-TDC/MATPOWER-wrapper], OpenDSS [https://sourceforge.net/projects/electricdss/], PSLF [https://github.com/GMLC-TDC/PSLF-wrapper], InterPSS [https://github.com/InterPSS-Project/ipss-common], FESTIV [https://www.nrel.gov/grid/festiv-model.html]) but is general enough to support a wide variety of simulators and co-simulation tasks. Support for other domains is anticipated to increase over time.

Who Is This User Guide For?

There are a number of classes of HELICS users:

	New users that have little to no experience with HELICS and co-simulation in general

	Intermediate users that have run co-simulations with HELICS using simulators in which somebody else implemented the HELICS support

	Experienced users that are incorporating a new simulator and need to know how to use specific features in the HELICS API

	Developers of HELICS who are improving HELICS functionality and contributing to the code base

User Guide Overview

	Co-Simulation Overview - A more detailed discussion of what co-simulation is and how it is used

	HELICS Key Concepts - Key terms and concepts to understand before running co-simulations with HELICS

	HELICS Co-Simulation Walk-through - A notional walk-through of a simple transmission and distribution HELICS co-simulation to show the basic steps the software runs through

	environment variables - A discussion of HELICS supported environment variables for use in setting up a co-simulation

	Federates - Discussion of the different types of federates in HELICS (value federates and message federates) and how configure them

	Message Filters - How HELICS message filters can be implemented natively in HELICS or as stand-alone federates

	Co-Simulation Timing - How HELICS coordinates the simulation time of all the federates in the federation

	Running HELICS co-simulations via helics_cli(forthcoming) - The HELICS team has developed helics_cli as a standardized means of running HELICS co-simulations.

	Cores (forthcoming) - Discussion of the different types of message-passing buses and their implementation as HELICS cores

	Broker Hierarchies (forthcoming) - Advantages and disadvantages of implementing hierarchies of brokers and how that is accomplished in HELICS

	Reiteration (forthcoming) - Discussion of why reiteration is used and how to successfully execute it in HELICS

	Queries - How queries can be used to get information on HELICS brokers, federates, and cores

	Logging - Discussion of logging within HELICS and how to control it.

	Getting Information from a running simulation - Getting live information from a running co-simulation through a webserver.

	Integrating a New Simulator - General overview of the process by which a simulator is integrated with HELICS including usage of the common APIs

	Trouble-Shooting HELICS Co-Simulations (forthcoming) - What to do when the co-simulations don’t seem to be working correctly.

	Simultaneous co-simulations - Options for running multiple independent co-simulations on a single system

	Connecting Multiple Core Types - What to do when one type of communication isn’t sufficient.

	N to 1 input connections - Handling multiple publications to a single input

	Large Co-Simulations in HELICS (forthcoming) - How to run HELICS co-simulations with a large (100+) number of federates

	Debugging - Capabilities to help with debugging

	Terminating a co-simulation - Some helpful tools for terminating a co-simulation

Additional Resources

	HELICS API - Doxygen of the current API. If you need to know the details of the APIs and function calls, this is the place.

	HELICS federate configuration - Details on how the federates can be configured

	Installation - Instructions on how to install HELICS

	C API

	Developer’s Guide - Details on how the software is assembled and some of the underlying components.

	Existing Tools - List of the existing tools using HELICS and some under development.

	Youtube Channel [https://www.youtube.com/channel/UCPa81c4BVXEYXt2EShTzbcg/featured] - Throughout the development of HELICS, developers and users have given mini-tutorials providing overviews of the work they have been doing. Due to its nature, many of the specifics of the content are out of date but many of the general concepts of HELICS haven’t changed. A good, broad overview of the project as a whole.

Tools with HELICS Support

The following list of tools is a list of tools that have worked with HELICS at some level either on current projects or in the past, or in some cases funded projects that will be working with certain tools.
These tools are in various levels of development.
Check the corresponding links for more information.

Power Systems Tools

Electric Distribution System Simulation

	GridLAB-D [https://www.gridlabd.org/], an open-source tool for distribution power-flow, DER models, basic house thermal and end-use load models, and more. HELICS support currently (8/15/2018) provided in the develop branch [https://github.com/gridlab-d/gridlab-d/tree/develop] which you have to build yourself as described here [https://github.com/GMLC-TDC/HELICS-Tutorial/tree/main/setup]. Or a CMake based branch [https://github.com/GMLC-TDC/gridlab-d] maintained as part of the GMLC-TDC organization [https://github.com/GMLC-TDC].

	OpenDSS [https://smartgrid.epri.com/SimulationTool.aspx], an open-source tool for distribution powerflow, DER models, harmonics, and other capabilities traditionally found in commercial distribution analysis tools. There are two primary interfaces with HELICS support:

	OpenDSSDirect.py [https://github.com/dss-extensions/OpenDSSDirect.py] which provides a “direct” interface to interact with the OpenDSS engine enabling support for non-Windows (Linux, OSX) systems.

	PyDSS [https://github.com/NREL/PyDSS] which builds on OpenDSSDirect to provide enhanced advanced inverter models and significantly more robust convergence with high-penetration DER controls along with flexible support for user-defined controls and visualization.

	CYME [http://www.cyme.com/software/cymdist/] has been used in connection with a python wrapper interface and through FMI wrapper.

Electric Transmission System Simulation

	GridDyn [https://github.com/LLNL/GridDyn], an open-source transmission power flow and dynamics simulator. HELICS support provided through the cmake_updates branch [https://github.com/LLNL/GridDyn/tree/cmake_update].

	PSST [https://github.com/kdheepak/psst], an open-source python-based unit-commitment and dispatch market simulator. HELICS examples are included in the HELICS-Tutorial [https://github.com/GMLC-TDC/HELICS-Tutorial].

	MATPOWER [http://www.pserc.cornell.edu/matpower/], an open-source Matlab based power flow and optimal power flow tool. HELICS support under development.

	InterPSS [http://www.interpss.org/], a Java-based power systems simulator. HELICS support under development. Use case instructions can be found here [https://gmlc-tdc.github.io/HELICS-Use-Cases/PNNL-TD-Dynamic-Load/index.html].

	PSLF [https://github.com/GMLC-TDC/PSLF-wrapper] has some level of support using the experimental python interface.

	PSS/E [https://new.siemens.com/global/en/products/energy/services/transmission-distribution-smart-grid/consulting-and-planning/pss-software/pss-e.html]

	PowerWorld [https://www.powerworld.com/] Simulator is an interactive power system simulation package designed to simulate high voltage power system operation on a time frame ranging from several minutes to several days.

	PyPower [https://pypi.org/project/PYPOWER/] does not have a standard HELICS integration but it has been used on various projects. PYPOWER is a power flow and Optimal Power Flow (OPF) solver. It is a port of MATPOWER to the Python programming language. Current features include:

	DC and AC (Newton’s method & Fast Decoupled) power flow and

	DC and AC optimal power flow (OPF)

Real time simulators

	OpalRT [https://www.opal-rt.com/hardware-in-the-loop/] A few projects are using HELICS to allow connections between Opal RT and other simulations

	RTDS [https://www.rtds.com/] Some planning or testing for RTDS linkages to HELICS is underway and will be required for some known projects

Electric Power Market simulation

	FESTIV [https://github.com/NREL/FESTIV_MODEL], the Flexible Energy Scheduling Tool for Integrating Variable Generation, provides multi-timescale steady-state power system operations simulations that aims to replicate the full time spectrum of scheduling and reserve processes (multi-step commitment and dispatch plus simplified AGC) to meet energy and reliability needs of the bulk power system.

	PLEXOS [https://energyexemplar.com/solutions/plexos/], a commercial production cost simulator. Support via OpenPLEXOS is under development.

	MATPOWER [http://www.pserc.cornell.edu/matpower/] (described above) also includes basic optimal powerflow support.

	PyPower [https://pypi.org/project/PYPOWER/] (described above) also includes basic AC and DC optimal powerflow solvers.

Contingency Analysis tools

	CAPE [https://new.siemens.com/global/en/products/energy/services/transmission-distribution-smart-grid/consulting-and-planning/pss-software/psscape.html] protection system modeling.

	DCAT [https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-26197.pdf] Dynamic contingency analysis tool.

Communication Tools

	HELICS provides built-in support for simple communications manipulations such as delays, lossy channels, etc. through its built-in filters.

	ns-3 [https://www.nsnam.org/], a discrete-event communication network simulator. Supported via the HELICS ns-3 module [https://github.com/GMLC-TDC/helics-ns3].

	OMNet++ [https://omnetpp.org/] is a public-source, component-based, modular and open-architecture simulation environment with strong GUI support and an embeddable simulation kernel. Its primary application area is the simulation of communication networks, but it has been successfully used in other areas like the simulation of IT systems, queueing networks, hardware architectures and business processes as well.
Early stage development with OMNET++ and HELICS is underway and a prototype example is available in HELICS-omnetpp [https://github.com/GMLC-TDC/helics-omnetpp].

Gas Pipeline Modeling

	NGFAST [http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.172.1169].

	GasModels.jl [https://github.com/lanl-ansi/GasModels.jl].

Optimization packages

	GAMS [https://www.gams.com/].

	JuMP [https://www.juliaopt.org/] support is provided through the HELICS Julia interface.

Transportation modeling

	BEAM [http://beam.lbl.gov/].

	POLARIS [https://www.anl.gov/es/polaris-transportation-system-simulation-tool].

Buildings

	Energy Plus [https://energyplus.net/].

Federate Configuration

Federates have a number of options for configuration. This includes a number of timing options controlling how the federate advances in time and interacts with other federates
Other options to specify how the federate communicates with HELICS. There are also a variety of options for specifying the interfaces of a federate and the communication points by which a
federate interacts with others. This can be through file configurations (JSON) or through API calls.

	Federate Configuration

	Message Federates

	Value Federates

	Filters

	Federate Timing

	Federate info

	Federate flags

	Core Types

Federate Configuration

General federate configuration consists of setting up the name, connectivity information, and timing information.
This is generally done through a FederateInfo object and passing that into the construction function for a federate.

Federate Name

A federate name is a string that contains the name of the federate, it should be unique in the federation, if not included a random UID is automatically generated.
This name is prepended for any local interfaces.

Core information

Certain information is used by the federate to establish linkages to a core object this.

Core name

the corename identifies a potentially preexisting core in the same process that can be used
or just names the created core.

Core type

See Core Types for more details on the specific types of cores which are available and their purposes, but in general the core type defines the communication method used in the federation.

Coreinitstring

The core init string is a string used by any created core to establish connectivity with a broker.
This includes port numbers, addresses, and the minimum number of federates. This is usually entered as a string containing command line arguments such as "--timeout=2s --broker 192.168.2.1"

Timing information

There are a number of parameters related to timing information in HELICS.
These determine what times the request time returns and how a federate handles interruptions and interacts with other federates.
For a detailed description of the timing parameters see Timing in Helics.

Interface configuration

The interfaces (Publications, Subscriptions, Endpoints, and a Filters) are how a federate interacts with the larger federation
These can be set up through API calls or through Configuration Files
Json files can also contain information for the FederateInfo structure including timing and connectivity information

The specific different kinds of Federates define the patterns for different elements. ValueFederates define the interfaces for publications and Input mechanisms.
MessageFederates define interfaces for endpoints and the basic Federate contains API’s for interacting with Filters

Filters can be configured via files the following is an example of a JSON file. TOML configuration files are also supported. You can find examples here [https://github.com/GMLC-TDC/HELICS-Examples/tree/bdbdf4/example_files]

"filters":[
{
 "name":"filtername", //filters can have names (optional)
 "sourcetargets":"ept1", // source target for the filter
 //"inputType":"genmessage", //can trigger some warnings if there is mismatches for custom filters only used if operation is "custom"
 //"outputType":"genmessage", //this could be useful if the filter actually translates the data and can be used to automatically order filters
 "operation":"delay", //currently valid operations are "delay","clone","cloning","timedelay","randomdelay","randomdrop","reroute","redirect","custom"
 "info":"this is an information string for use by the application",
 "properties": //additional properties for filters are specified in a property array or object if there is just a single one
 {
 "name":"delay", //A delay filter just has a single property
 "value":0.2 //times default to seconds though units can also be specified "200 ms" or similar
 }
},
{
 "name":"filtername2", //filters can have names (optional)
 "sourcetargets":["filterFed/ept2"], //this is a key field specifying the source targets can be an array
 //"dest":["dest targets"], // field specifying destination targets
 "operation":"reroute", //currently valid operations are "delay","clone","cloning","timedelay","randomdelay","randomdrop","reroute","redirect","custom"
 "properties": //additional properties for filters are specified in a property array or object if there is just a single one
 {
 "name":"newdestination", //A reroute filter takes a new destination
 "value":"ept1" //the value here is the endpoint that should be the new destination
 }
},
{
 "name":"filterClone", //filters can have names (optional)
 "delivery":"ept2", //cloning filters can have a delivery field
 "cloning":true, //specify that this is cloning filter
 "properties": //additional properties for filters are specified in a property array or object if there is just a single one
 [{
 "name":"destination", //destination adds a cloning filter for all messages delivered to a particular
 "value":"ept1" //the value here the endpoint that will have its messages cloned
 },
 {

 "name":"source", //source adds a cloning filter for all messages send from a particular endpoint
 "value":"ept1" //the value here the endpoint that will have its messages cloned
 }
] //this pair of properties clone all messages to or from "ept1" this could also be done in one property with "endpoint" but this seemed more instructive in this file
}
]

}

Notes

The properties of a filter vary depending on the exact filter specified.

Valid modes are “source”, “dest”, “clone”

for source and dest filters valid operations include “delay”, “reroute”, “randdelay”, “randomdrop”, “clone”, “custom”

for clone filters an operation of “clone” is assumed other specification result in errors on configuration.

“custom” filter operations usually require setting of a custom callback otherwise the filter won’t do anything.

Message Federates

Message Federates provide the interfaces for registering endpoints and sending and receiving messages through those endpoints.
Endpoints can be configured through API calls or through file configurations

API calls

Endpoints can be declared through MessageFederate methods or through Endpoint objects.
These are defined in MessageFederate.hpp and Endpoints.hpp.
For the MessageFederate api the register calls return and endpoint_id_t value that must be used whenever the endpoint is referenced.
The Endpoint object api contains those calls in a separate object.

file configuration

File based configuration looks primarily at an “endpoints” JSON array

//this should be a valid JSON file (except comments are not recognized in standard JSON)
{
 //example JSON configuration file for a message federate all arguments are optional
 "name": "messageFed", // the name of the federate
 //possible flags
 "observer": false, // indicator that the federate does not send anything
 "rollback": false, // indicator that the federate can use rollback -NOTE: not used at present
 "only_update_on_change": false, //indicator that the federate should only indicate updated values on change
 "only_transmit_on_change": false, //indicator that the federate should only publish if the value changed
 "source_only": false, //indicator that the federate is only a source and is not expected to receive anything
 "uninterruptible": false, //indicator that the federate should only return requested times
 "coreType": "test", //the type of the core "test","zmq","udp","ipc","tcp","mpi"
 "coreName": "the name of the core", //this matters most for ipc and test cores, can be empty
 "coreInit": "1", // the initialization string for the core in the form of a command line arguments
 "maxIterations": 10, //the maximum number of iterations for a time step
 "period": 1.0, //the period with which federate may return time
 "offset": 0.0, // the offset shift in the period
 "timeDelta": 0.0, // the minimum time between subsequent return times
 "outputDelay": 0, //the propagation delay for federates to send data
 "inputDelay": 0, //the input delay for external data to propagate to federates

 //endpoints used in the federate
 "endpoints": [
 {
 "name": "ept1", // the name of the publication
 "type": "genmessage", // the type associated with a endpoint endpoint types have limited usefulness at present (optional)
 "global": true //set to true to make the key global (default is false in which case the publication is prepended with the federate name)
 },
 {
 "name": "ept2", // the name of the publication
 "type": "message2", // the type associated with a endpoint (optional)
 //the fact that there is no global value creates a local endpoint with global name messageFed/ept2
 "knownDestinations": "ept1", //this value can be an array of strings or just a single one it names key paths
 //knownDestinations can be used to optimize the communication pathways inside of HELICS
 "subscriptions": "fed2/sub1" //subscribe an endpoint to a particular publication this means that an endpoint will get a message whenever anything is published to that particular key
 //the message will be raw data so it would have to be translated to be useful. this can also be a JSON array to subscribe to multiple publications
 }
]
}

See the comments in the file for more information.
Endpoints can subscribe to publications in which case a message is delivered for every value published.

Value Federates

Value Federates provide the API for direct data transfer interfaces This includes Publications and Inputs.
Publications are outgoing data, and inputs are incoming data.
Value federates provide the API to generate and interact with those types of interfaces.
This can be done with configuration files or through API calls.

API calls

Publications and Inputs can be declared through ValueFederate methods.
These are defined in ValueFederate.hpp and Publications.hpp and Inputs.hpp.
For the ValueFederate api the register calls return a Publication or Input reference.
These objects can be used through ValueFederate calls or as independent object with their own methods.

File configuration

File based configuration looks primarily at an “publications” or “subscriptions” JSON array.

//this should be a valid json file (except comments are not recognized in standard JSON)
{
 //example json configuration file for a value federate all arguments are optional
 "name": "valueFed", // the name of the federate
 //possible flags
 "observer": false, // indicator that the federate does not send anything
 "rollback": false, // indicator that the federate can use rollback -NOTE: not used at present
 "only_update_on_change": false, //indicator that the federate should only indicate updated values on change
 "only_transmit_on_change": false, //indicator that the federate should only publish if the value changed
 "source_only": false, //indicator that the federate is only a source and is not expected to receive anything
 "uninterruptible": false, //indicator that the federate should only return requested times
 "coretype": "test", //the type of the core "test","zmq","udp","ipc","tcp","mpi"
 "corename": "the name of the core", //this matters most for ipc and test cores, can be empty
 "coreinit": "--autobroker", // the initialization string for the core in the form of a command line arguments
 "max_iterations": 10, //the maximum number of iterations for a time step
 "period": 1.0, //the period with which federate may return time
 "offset": 0.0, // the offset shift in the period
 "time_delta": 0.0, // the minimum time between subsequent return times
 "output_delay": 0, //the propagation delay for federates to send data
 "input_delay": 0, //the input delay for external data to propagate to federates

 //Publications used in the federate
 "publications": [
 {
 "key": "pub1", // the name of the publication
 "type": "double", // the type associated with a publication (optional)
 "unit": "m", // the units associated with a publication (optional)
 "global": true, //set to true to make the key global (default is false in which case the publication is prepended with the federate name)
 "info": "this is an information string for use by the application"
 },
 {
 "key": "pub2", // the name of the publication
 "type": "double" // the type associated with a publication (optional)
 //no global:true implies this will have the federate name prepended like valueFed/pub2
 }
],
 //subscriptions used in the federate
 "subscriptions": [
 {
 "key": "pub1", // the key of the publication
 "required": true //set to true to make helics issue a warning if the publication is not found
 },
 {
 "key": "fedName/pub2", // the name of the publication to subscribe to
 "shortcut": "pubshortcut", //a naming shortcut for the publication for later retrieval
 "info": "this is an information string for use by the application"
 }
],

 "inputs": [
 { "key": "ipt2", "type": "double", "required": true, "target": "pub1" }
 //specify an input with a target multiple targets could be specified like "targets":["pub1","pub2","pub3"]
],

 "globals": [
 ["global1", "this is a global1 value"],
 ["global2", "this is another global value"]
]
}

Notes

Shortcuts just provide a shortcut name for later reference instead of having to use a potentially longer key, the shortcut is only relevant inside a single federate.

Filters

Filters are interfaces which can modify messages including routes, destinations, times, existence, and payloads.
This is useful for inserting communication modules into a data stream as an optional component they can also be used to clone messages and randomly drop them.

Filter Creation

Filters are registered with the core or through the application API.
There are also Filter object that hide some of the API calls in a slightly nicer interface.
Generally a filter will define a target endpoint as either a source filter or destination filter.
Source filters can be chained, as in there can be more than one of them.
At present there can only be a single non-cloning destination filter attached to an endpoint.

Non-cloning filters can modify the message in some way, cloning filters just copy the message and may send it to multiple destinations.

On creation, filters have a target endpoint and an optional name.
Custom filters may have input and output types associated with them.
This is used for chaining and automatic ordering of filters.
Filters do not have to be defined on the same core as the endpoint, and in fact can be anywhere in the federation, any messages will be automatically routed appropriately.

predefined filters

Several predefined filters are available, these are parameterized so they can be tailored to suite the simulation needs

reroute

This filter reroutes a message to a new destination. it also has an optional filtering mechanism that will only reroute if some patterns are matching the patterns should be specified by “condition” in the set string the conditions are regular expression pattern matching strings

delay

This filter will delay a message by a certain amount

randomdelay

This filter will randomly delay a message according to specified random distribution
available options include distribution selection, and 2 parameters for the distribution
some distributions only take one parameter in which case the second is ignored. The distributions available are based on those available in the C++ <random> [http://www.cplusplus.com/reference/random/] library

	constant - param1=”value” this just generates a constant value

	uniform [http://www.cplusplus.com/reference/random/uniform_real_distribution/] param1=”min”, param2=”max”

	bernoulli [http://www.cplusplus.com/reference/random/bernoulli_distribution/]
param1=”prob”, param2=”value” the bernoulli distribution will return param2 if the bernoulli trial returns true, 0.0 otherwise. Param1 is the probability of returning param2

	binomial [http://www.cplusplus.com/reference/random/binomial_distribution/] param1=t (cast to int) param2=”p”

	geometric [http://www.cplusplus.com/reference/random/geometric_distribution/]
param 1=”prob” the output is param2*geom(param1) so multiplies the integer output of the geometric distribution by param2 to get discrete chunks

	poisson [http://www.cplusplus.com/reference/random/poisson_distribution/] param1=”mean”

	exponential [http://www.cplusplus.com/reference/random/exponential_distribution/] param1=”lambda”

	gamma [http://www.cplusplus.com/reference/random/gamma_distribution/] param1=”alpha” param2=”beta”

	weibull [http://www.cplusplus.com/reference/random/weibull_distribution/] param1=”a” param2=”b”

	extreme_value [http://www.cplusplus.com/reference/random/extreme_value_distribution/] param1=”a” param2=”b”

	normal [http://www.cplusplus.com/reference/random/normal_distribution/]
param1=”mean”, param2=”stddev”

	lognormal [http://www.cplusplus.com/reference/random/lognormal_distribution/] param1=”mean”, param2=”stddev”

	chi_squared [http://www.cplusplus.com/reference/random/chi_squared_distribution/]
param1=”n”

	cauchy [http://www.cplusplus.com/reference/random/cauchy_distribution/] param1=”a” param2=”b”

	fisher_f [http://www.cplusplus.com/reference/random/fisher_f_distribution/]
param1=”m” param2=”n”

	student_t [http://www.cplusplus.com/reference/random/student_t_distribution/] param1=”n”

randomdrop

This filter will randomly drop a message, the drop probability is specified, and is modeled as a uniform distribution.

clone

this message will copy a message and send it to the original destination plus a new one.

firewall

The firewall filter will eventually be able to execute firewall like rules on messages and perform certain actions on them, that can set flags, or drop or reroute the message. The nature of this is still in development and will be available at a later release.

custom filters

Custom filters are allowed as well, these require a callback operator that can be called from any thread
and modify the message in some way.

Federate Timing

Time control in a federation is handled via timeController objects in each
Federate and Core. This allows Federation timing to be handled in a distributed
fashion and each federate can tune the timing in a way that is appropriate for the
Federate.

The parameters associated with the time control are in FederateInfo.
They include inputDelay, outputDelay, period, minTimeDelta, and offset.
These parameters along with the timeRequest functions determine how time advances
in a federate.

Timing Parameters

Thse parameters take a time specification

Period and Offset

The period and offset of a Federate determine the allowable times which a federate
may grant. All granted times for a federate will be in accordance with the following:

T=n*Period+offset

With the exception that all federates are granted time=0 when entering execution mode.
n can be 0 so if the offset is greater than 0 then the first granted time will T=offset.
The default values for both period and offset are 0. Offset can be set to a value bigger than the
period if a federate wishes to skip ahead and ignore transients or other updates going on in the first
part of a co-simulation.

minTimeDelta

The minimum time delta of federate determines how close two granted times may be to each other.
The default value is set to the system epsilon which is the minimum time resolution of the Time class
used in HELICS.
This can be used to achieve similar effects as the period, but it has a different meaning.
If the period is set to be smaller than the minTimeDelta, then when granted the federate will skip ahead a couple time steps.

With these parameters many different patterns are possible.

Input Delay

The input delay can be thought of as the propagation delay for signals going into a federate.
Basically all values and signals are only acknowledged in the timing calculations after the prescribed delay.

Output Delay

The output delay is symmetrical to the input delay.
Except it applies to all outgoing messages. Basically once a time is granted the federate cannot effect other federates until T+outputDelay.

rt_lag

real time tolerance - the maximum time grants can lag real time before HELICS automatically acts
default=0.2 given this operates on a computer clock, time <0.005 are not going be very accurate or followed that closely unless the OS is specifically setup for that sort of timing level

rt_lead

real time tolerance - the maximum time grants can lead real time before HELICS forces an additional delay

Timing Flags

uninterruptible

If set to true the federate can only return time expressly requested(or the next valid time after the requested time)

source_only

Indicator that the federate is only used for signal generation and doesn’t depend on any other federate for timing.
Having subscriptions or receiving messages is still possible but the timing of them non-deterministic.

observer

If the observer flag is set to true, the federate is intended to be receive only and will not impact timing of any other federate
sending messages from an observer federate is undefined.

rollback (not used)

Should be set to true for federates that support rollback

only_update_on_change

If set to true a federate will only trigger a value update if the value has actually changed on a granted time.
Change is defined as binary equivalence, Subscription objects can be used for numerical limits and other change detection.

only_transmit_on_change

If set to true a federate will only transmit publishes if the value has changed. Change is defined as binary equivalence.
If numerical deltas and ranges are desired use Publication objects for finer grained control.
This flag applies federate wide.

wait_for_current_time_update

If set to true a federate will wait on the requested time until all other federates have completed at least 1 iteration of the current time or have moved past it. If it is known that 1 federate depends on others in a non-cyclic fashion, this can be used to optimize the order of execution without iterating.

realtime

If set to true the federate uses rt_lag and rt_lead to match the time grants of a federate to the computer wall clock.
If the federate is running faster than real time this will insert additional delays.
If the federate is running slower than real time this will cause a force grant, which can lead to non-deterministic behavior.
rt_lag can be set to maxVal to disable force grant

restrictive-time-policy

Using the option restrictive-time-policy forces HELICS to use a fully conservative mode in granting time. This can be useful in situations beyond the current reach of the distributed time algorithms. It is generally used in cases where it is known that some federate is executing and will trigger someone else, but most federates won’t know who that might be. This prevents extra messages from being sent and a potential for time skips. It is not needed if some federates are periodic and execute every time step. It is currently only used in few benchmarks using peculiar configurations. The flag can be used for federates and for brokers and cores to force very conservative timing.

Federate info

The FederateInfo structure contains information that can be passed to a federation upon construction. Some information can be updated continuously other can be only be changed before initializationMode is entered.

separator [char]

the separator character between federateName and endpoint or publications that are not declared global. the default is ‘/’

coreName [string]

The name of the core to connect with, can be left blank to either find an available core or generate one automatically.

coreInitString [string]

Command line arguments that are passed to the core when starting it. Some examples are:

	“-f2” to specify 2 federates will connect

	“-f1 –broker=192.168.2.3:23444” to specify a single federate and to connect to a broker at ipaddress 192.168.2.3 port 23444

coreType [enum]

Specify which type of core to use. See core types for more details

They can be generated from a string using the

core_type coreTypeFromString (std::string type) noexcept

function call. The function

bool isCoreTypeAvailable (core_type type) noexcept;

will check if the specified core type is available in the current build of the library on a specific platform.

broker [string]

specify the broker to connect to, can be an ipaddress, or a name of the broker depending on the core type and federation configuration.

localport [string]

The local ip port to use for incoming connections. This is usually a number but depending on the system some ports can be named.

properties [bool]

Federate info structures accept properties as either Time values, integers, or flag values (bool). These are entered through the setProperty calls or the setFlagOption call.
The function calls take a propertyID and a value.
For a description of the available options see Timing and helics_enums and helics_definitions

Timing control variables

see timing for more details.

timeDelta[time]

the minimum time advance allowed by the federate
default timeEpsilon

outputDelay[time]

The amount of time values and messages take to propagate to be
available to external federates.
default= 0

inputDelay[time]

the time it takes values and messages to propagate to be accessible to the Federate
default=0

period[time]

a period value, all granted times must be on this period n*Period+offset
default=0

offset[time]

offset to the time period
default=0

rt_lag[time]

real time tolerance - the maximum time grants can lag real time before HELICS automatically acts
default=0.2 given this operates on a computer clock, time <0.005 are not going be very accurate or followed that closely unless the OS is specifically setup for that sort of timing level

rt_lead[time]

real time tolerance - the maximum time grants can lead real time before HELICS forces an additional delay
default 0.1

Timing flags

	observer = false
flag indicating that the federate is an observer

	uninterruptible =false
flag indicating that the federate should never return a time other than requested

	source_only = false;
flag indicating that the federate does not receive or do anything with received information.

	only_transmit_on_change =false
flag indicating that values should only updated if the number has actually changes

	only_update_on_change = false
flag indicating values should be discarded if they are not changed from previous values

	wait_for_current_time_updates = false
flag indicating that the federate should only grant when no more messages can be received at the current time

	realtime = false
flag indicating that the federate is required to operate in real time. the federate must have a non-zero period

	slow_responding = false
flag indicating that the federate might be slow to respond to internal pings or take a long time between steps

Other Controls

maxIterations[int16]

the maximum number of iterations allowed for the federate
default=50

logLevel[int32]

the logging level above which not to log to file default 1(WARNING)

Federate flags

There are a number of flags which control how a federate acts with respect to timing and its interfaces. The Timing flags and controls are described here. There are also a number of other flags which control some aspects of the interfaces, and a few other flags which can be applied to specific interfaces.

single_thread_federate

If specified in the federateInfo on creation this tells the core that this federate will only execute in a single thread and only a single federate is interacting with the connected core.

NOTE: This option is not fully enabled and won’t be fully available until HELICS 3.0 is released.

This disables the asynchronous functions in the federate and turns off a number of protection mechanisms for handling federate interaction across multiple threads. This can be used for performance reasons and can interact with the single_thread core types that are in development.

ignore_time_mismatch_warnings

If certain timing options are used this can cause the granted time to be greater than the requested time. For example with the period, or minTimeDelta specified. This situation would normally generate a warning message, but if this option is enabled those warnings are silenced.

connections_required

When an interface requests a target it tries to find a match in the federation. If it cannot find a match at the time the federation is initialized, then the default is to generate a warning. This will not halt the federation but will display a log message. If the connections required flag is set on a federate all subsequent addTarget calls on any interface will generate an error if the target is not available. If the addTarget is made after the initialization point, the error is immediate.

connections_optional

When an interface requests a target it tries to find a match in the federation. If it cannot find a match at the time the federation is initialized, then the default is to generate a warning. This will not halt the federation but will display a log message. If the connections_optional flag is set on a federate all subsequent addTarget calls on any interface will not generate any message if the target is not available.

strict_input_type_checking

This applies to Input interface. If enabled this flag tells the inputs to check that the type matches.

slow_responding

If specified on a federate it indicates the federate may be slow in responding, and to not disconnect the federate if things are slow.
If applied to a core or broker, it is indicative that the broker doesn’t respond to internal pings quickly so they cannot be used as a mechanism for timeout. For federates this option doesn’t do much but its role will likely be expanded as more robust timeout and coordination mechanics are developed.

debugging

If a program is being debugged and may halt execution the --debugging flag may be used to turn off some timeouts and keep everything working a little more smoothly. This flag is the equivalent of “–slow_responding” for a federate and “–slow_responding –disable_timer` for a broker/core.

terminate on error

If the terminate_on_error flag is set then a federate encountering an internal error will trigger a global error and cause the entire federation to abort. If the flag is not set then errors will only be local. Errors of this nature are typically the result of configuration errors. For example having a required publication that is not used or incompatible units or types on publications and subscriptions.

Core Types

There are several different core/broker types available in HELICS
These can be used in different circumstances depending on the platform and system desires

Test

The Test core functions in a single process, and works through inter-thread communications.
Its primary purpose is to test communication patterns and algorithms. However, in situations
where all federates can be run in a single process it is probably the fastest and easiest to setup, and it is fully operational.

Interprocess

The Interprocess core uses memory mapped files to transfer data, In some circumstances it can be faster than the other cores
It can only be used inside a single shared memory platform. It also has some limitations on Message sizes. It does not support
multi tiered brokers.

ZMQ

The ZMQ is the primary core to use for multi-machine systems. It uses the
ZMQ [https://zeromq.org] mechanisms. Internally it makes use of the REQ/REP mechanics for priority
communications and PUSH/PULL for non-priority communication messages.

ZMQ_SS

The ZMQ_SS core was developed to minimize the number of sockets in use to support very high federate counts on a single machine. It uses the DEALER/ROUTER mechanics instead of PUSH/PULL

UDP

UDP communications sends IP messages. UDP communication is not guaranteed or ordered, but may be faster in cases with highly reliable networking
Its primary use is for performance testing. The UDP core uses asio for networking

TCP

TCP communications is an alternative to ZMQ on platforms where ZMQ is not available, performance comparisons have not been done, so it is unclear as to the relative performance differences
between TCP, UDP, and ZMQ. It uses the asio library for networking

TCP_SS

The TCP_SS core is targeted at firewall applications to allow the outgoing connections to be made from the cores or brokers and have only a single external socket exposed

MPI

MPI communications is often used in HPC systems. It uses the message passing interface to communicate between nodes in an
HPC system. It is still in testing and over time there is expected to be a few
different levels of the MPI core used in different platforms depending on MPI versions available and federation needs.

Apps

Included with HELICS are a number of apps that provide useful utilities and test programs for getting started and running with HELICS

	Recorder

	Player

	Source

	helics_app

	Command Line Arguments

	Echo

	Tracer

	Broker

	Broker Server

	Clone

Recorder

The Recorder application is one of the HELICS apps available with the library
Its purpose is to provide a easy way to capture data from a federation
It acts as a federate that can “capture” values or messages from specific publications
or direct endpoints or cloned endpoints which exist elsewhere

Command line arguments

allowed options:

command line only:
 -? [--help] produce help message
 -v [--version] display a version string
 --config-file arg specify a configuration file to use

configuration:
 --local specify otherwise unspecified endpoints and
 publications as local(i.e.the keys will be prepended
 with the player name
 --stop arg the time to stop the player
 --quiet turn off most display output

allowed options:

configuration:
 -b [--broker] arg address of the broker to connect
 -n [--name] arg name of the player federate
 --corename arg the name of the core to create or find
 -c [--core] arg type of the core to connect to
 --offset arg the offset of the time steps
 --period arg the period of the federate
 --timedelta arg the time delta of the federate
 --rttolerance arg the time tolerance of the real time mode
 -i [--coreinit] arg the core initialization string
 --separator arg separator character for local federates
 --inputdelay arg the input delay on incoming communication of the
 federate
 --outputdelay arg the output delay for outgoing communication of the
 federate
 -f [--flags] arg named flag for the federate

allowed options:

configuration:
 --tags arg tags to record, this argument may be specified any
 number of times
 --endpoints arg endpoints to capture, this argument may be specified
 multiple time
 --sourceclone arg existing endpoints to capture generated packets from,
 this argument may be specified multiple time
 --destclone arg existing endpoints to capture all packets with the
 specified endpoint as a destination, this argument may
 be specified multiple time
 --clone arg existing endpoints to clone all packets to and from
 --capture arg capture all the publications of a particular federate
 capture="fed1;fed2" supports multiple arguments or a
 semicolon/comma separated list
 -o [--output] arg the output file for recording the data
 --allow_iteration allow iteration on values
 --verbose print all value results to the screen
 --marker arg print a statement indicating time advancement every <arg> seconds of the simulation
 is the period of the marker
 --mapfile arg write progress to a map file for concurrent progress
 monitoring

also permissible are all arguments allowed for federates and any specific broker specified:

Command line reference

the player executable also takes an untagged argument of a file name for example

helics_recorder record_file.txt --stop 5

Recorders support both delimited text files and json files some examples can be found in

Player configuration examples [https://github.com/GMLC-TDC/HELICS/tree/helics2/tests/helics/apps/test_files]

config file detail

subscriptions

a simple example of a recorder file specifying some subscriptions

#FederateName topic1

sub pub1
subscription pub2

signifies a comment

if only a single column is specified it is assumed to be a subscription

for two column rows the second is the identifier
arguments with spaces should be enclosed in quotes

	interface

	description

	s, sub, subscription

	subscribe to a particular publication

	endpoint, ept, e

	generate an endpoint to capture all targeted packets

	source, sourceclone,src

	capture all messages coming from a particular endpoint

	dest, destination, destclone

	capture all message going to a particular endpoint

	capture

	capture all data coming from a particular federate

	clone

	capture all message going from or to a particular endpoint

for 3 column rows the first must be either clone or capture
for clone the second can be either source or destination and the third the endpoint name
[for capture it can be either “endpoints” or “subscriptions”] NOTE:not fully working yet for capture

JSON configuration

recorders can also be specified via JSON files

here are two examples of the text format and equivalent JSON

#list publications and endpoints for a recorder

pub1
pub2
e src1

JSON example

{
 "subscriptions": [
 {
 "key": "pub1",
 "type": "double"
 },
 {
 "key": "pub2",
 "type": "double"
 }
],
 "endpoints": [
 {
 "name": "src1",
 "global": true
 }
]
}

some configuration can also be done through JSON through elements of “stop”,”local”,”separator”,”timeunits”
and file elements can be used to load up additional files

output

Recorders capture files in a format the Player can read see Player
the --verbose option will also print the values to the screen.

Map file output

the recorder can generate a live file that can be used in process to see the progress of the Federation
This is occasionally useful, though for many uses the Tracer will be more useful when it is completed

Player

The player application is one of the HELICS apps available with the library
Its purpose is to provide a easy way to generate data into a federation
It acts as a federate that can “play” values or messages at specific times
It exists as a standalone executable but also as library object so could be integrated
into other components

Command line arguments

command line only:
 -? [--help] produce help message
 -v [--version] display a version string
 --config-file arg specify a configuration file to use

configuration:
 --local specify otherwise unspecified endpoints and
 publications as local(i.e.the keys will be prepended
 with the player name
 --stop arg the time to stop the player
 --quiet turn off most display output

configuration:
 -b [--broker] arg address of the broker to connect
 -n [--name] arg name of the player federate
 --corename arg the name of the core to create or find
 -c [--core] arg type of the core to connect to
 --offset arg the offset of the time steps
 --period arg the period of the federate
 --timedelta arg the time delta of the federate
 --rttolerance arg the time tolerance of the real time mode
 -i [--coreinit] arg the core initialization string
 --separator arg separator character for local federates
 --inputdelay arg the input delay on incoming communication of the
 federate
 --outputdelay arg the output delay for outgoing communication of the
 federate
 -f [--flags] arg named flag for the federate

allowed options:

configuration:
 --datatype arg type of the publication data type to use
 --marker arg print a statement indicating time advancement every arg seconds
 is the period of the marker
 --time_units arg the default units on the timestamps used in file based
 input

also permissible are all arguments allowed for federates and any specific broker specified:

Command line reference

the player executable also takes an untagged argument of a file name for example

helics_player player_file.txt --stop 5

Players support both delimited text files and JSON files some examples can be found in

Player configuration examples [https://github.com/GMLC-TDC/HELICS/tree/helics2/tests/helics/apps/test_files]

Config File Detail

publications

a simple example of a player file publishing values

#second topic type(opt) value
-1.0, pub1, d, 0.3
1, pub1, 0.5
3, pub1 0.8
2, pub1 0.7
pub 2
1, pub2, d, 0.4
2, pub2, 0.6
3, pub2, 0.9
4, 0.7 # this statement is assumed to refer to pub 2

signifies a comment
the first column is time in seconds unless otherwise specified via the --time_units flag or other configuration means
the second column is publication name
the final column is the value
the optional third column specifies a type valid types are

time specifications are typically numerical with optional units
5 or "500 ms" or 23.7us if there is a space between the number and units it must be enclosed in quotes
if no units are specified the time defaults to units specified via --time_units or seconds if none were specified
valid units are “s”, “ms”, “us”, “min”, “day”, “hr”, “ns”, “ps” the default precision in HELICS is ns so time specified in ps is not guaranteed to be precise

	identifier

	type

	Example

	d,f, double

	double

	45.1

	s,string

	string

	“this is a test”

	i, i64, int

	integer

	456

	c, complex

	complex

	23+2j, -23.1j, 1+3i

	v, vector

	vector of doubles

	[23.1,34,17.2,-5.6]

	cv, complex_vector

	vector of complex numbers

	[23+2j, -23.1j, 1+3i]

capitalization does not matter

values with times <0 are sent during the initialization phase
values with time==0 are sent immediately after entering execution phase

Messages

messages are specified in one of two forms

m <time> <source> <dest> <data>

or

m <sendtime> <deliverytime> <source> <dest> <time> <data>

the second option allows sending events at a different time than they are triggered
the data portion of messages can be encoded in base64 by marking as b64[] or base64[X] all data between the brackets will be converted to raw binary. A ‘]’ must be last. The string interpreter can also handle messages with any escapable characters including tab (“\t”), newline (“\n”), and quote (“””), this can be marked by using quotes as in "<message>" to make it interpret the message as a JSON quoted string.

 Source

Source

The Source app generates signals for other federates, it functions similarly to the
player but doesn’t take a prescribed file instead it generates signals according to some
mathematical function, like sine, ramp, pulse, or random walk.
This can be useful for sending probing signals or just testing responses of the federate to various stimuli.

Command line arguments

allowed options:

command line only:
 -? [--help] produce help message
 -v [--version] display a version string
 --config-file arg specify a configuration file to use

configuration:
 --datatype arg type of the publication data type to use
 --local specify otherwise unspecified endpoints and
 publications as local(i.e.the keys will be prepended
 with the player name
 --separator arg specify the separator for local publications and
 endpoints
 --time_units arg the default units on the timestamps used in file based
 input
 --stop arg the time to stop the player

federate configuration
 -b [--broker] arg address of the broker to connect
 -n [--name] arg name of the player federate
 --corename arg the name of the core to create or find
 -c [--core] arg type of the core to connect to
 --offset arg the offset of the time steps
 --period arg the period of the federate
 --timedelta arg the time delta of the federate
 -i [--coreinit] arg the core initialization string
 --inputdelay arg the input delay on incoming communication of the
 federate
 --outputdelay arg the output delay for outgoing communication of the
 federate
 -f [--flags] arg named flags for the federate

also permissible are all arguments allowed for federates and any specific broker specified:

Command line reference

the player executable also takes an untagged argument of a file name for example

helics_player player_file.txt --stop 5

Players support both delimited text files and JSON files some examples can be found in

Player configuration examples [https://github.com/GMLC-TDC/HELICS/tree/helics2/tests/helics/apps/test_files]

Config File Detail

publications

a simple example of a player file publishing values

#second topic type(opt) value
-1.0, pub1, d, 0.3
1, pub1, 0.5
3, pub1 0.8
2, pub1 0.7
pub 2
1, pub2, d, 0.4
2, pub2, 0.6
3, pub2, 0.9

signifies a comment
the first column is time in seconds unless otherwise specified via the --time_units flag or other configuration means
the second column is publication name
the final column is the value
the optional third column specifies a type valid types are

time specifications are typically numerical with optional units
5 or "500 ms" or 23.7us if there is a space between the number and units it must be enclosed in quotes
if no units are specified the time defaults to units specified via --time_units or seconds if none were specified
valid units are “s”, “ms”, “us”, “min”, “day”, “hr”, “ns”, “ps” the default precision in HELICS is ns so time specified in ps is not guaranteed to be precise

	identifier

	type

	Example

	d,f, double

	double

	45.1

	s,string

	string

	“this is a test”

	i, i64, int

	integer

	456

	c, complex

	complex

	23+2j, -23.1j, 1+3i

	v, vector

	vector of doubles

	[23.1,34,17.2,-5.6]

	cv, complex_vector

	vector of complex numbers

	[23+2j, -23.1j, 1+3i]

capitalization does not matter

values with times <0 are sent during the initialization phase
values with time==0 are sent immediately after entering execution phase

Messages

messages are specified in one of two forms

m <time> <source> <dest> <data>

or

m <sendtime> <deliverytime> <source> <dest> <time> <data>

the second option allows sending events at a different time than they are triggered

JSON configuration

player values can also be specified via JSON files

here are two examples of the text format and equivalent JSON

#example player file
mess 1.0 src dest "this is a test message"
mess 1.0 2.0 src dest "this is test message2"
M 2.0 3.0 src dest "this is message 3"

JSON example

{
 "messages": [
 {
 "source": "src",
 "dest": "dest",
 "time": 1.0,
 "data": "this is a test message"
 },
 {
 "source": "src",
 "dest": "dest",
 "time": 2.0,
 "data": "this is test message2"
 },
 {
 "source": "src",
 "dest": "dest",
 "time": 3.0,
 "data": "this is message 3"
 }
]
}

#second topic type(opt) value
-1 pub1 d 0.3
1 pub1 d 0.5
2 pub1 d 0.7
3 pub1 d 0.8
1 pub2 d 0.4
2 pub2 d 0.6
3 pub2 d 0.9

Example JSON

{
 "points": [
 {
 "key": "pub1",
 "type": "double",
 "value": 0.3,
 "time": -1
 },
 {
 "key": "pub2",
 "type": "double",
 "value": 0.4,
 "time": 1.0
 },
 {
 "key": "pub1",
 "value": 0.5,
 "time": 1.0
 },
 {
 "key": "pub1",
 "value": 0.8,
 "time": 3.0
 },
 {
 "key": "pub1",
 "value": 0.7,
 "time": 2.0
 },
 {
 "key": "pub2",
 "value": 0.6,
 "time": 2.0
 },
 {
 "key": "pub2",
 "value": 0.9,
 "time": 3.0
 }
]
}

some configuration can also be done through JSON through elements of “stop”,”local”,”separator”,”time_units”
and file elements can be used to load up additional files

 helics_app

helics_app

The HELICS apps executable is one of the HELICS apps available with the library
Its purpose is to provide a common executable for running any of the other as

typical syntax is as follows

helics-app.exe <app> <app arguments ...>

possible apps are

Echo

The Echo app is a responsive app that will echo any message sent to its endpoints back to the original source with a specified delay

This is useful for testing communication pathways and in combination with filters can be used to create some interesting situations

Player

The player app will generate signals through specified interfaces from prescribed data
This is used for generating test signals into a federate

Recorder

The Recorder app captures signals and data on specified interfaces and can record then to various file formats including text files and JSON files
The files saved can then be used by the Player app at a later time

Tracer

The Tracer app functions much like the recorder when run as a standalone app with the exception that it displays information to a text window and doesn’t capture to a file
The additional purpose is used as a library object as the basis for additional display purposes and interfaces

Source

The Source app is a signal generator like the player except that is can generate signals from defined patterns including some random signals in value and timing, and other patterns like sine, square wave, ramps
and others. Used much like the player in situations some test signals are needed.

Broker

The Broker executes a broker like the stand alone Broker app, it does not include the broker terminal application.

Clone

The Clone has the ability to copy another federate and record it to a file that can be used by a Player. It will duplicate all publications and subscriptions of a federate.

MultiBroker

The Multibroker is an in progress development of a broker that can interact with multiple communication modes. Such as a single broker that can act as a bridge between MPI and ZeroMQ or other network protocols. More documentation will be available as the multibroker is developed

 Command Line Arguments

Command Line Arguments

allowed options:

command line only:
 -? [--help] produce help message
 -v [--version] display a version string
 --config-file arg specify a configuration file to use

configuration:
 -n [--name] arg name of the broker
 -t [--type] arg type of the broker ("(zmq)", "ipc", "test", "mpi",
 "test", "tcp", "udp")

 Help for Zero MQ Broker:

configuration:
 --interface arg the local interface to use for the receive ports
 -b [--broker] arg identifier for the broker
 --broker_address arg location of the broker i.e network address
 --brokerport arg port number for the broker priority port
 --localport arg port number for the local receive port
 --port arg port number for the broker's port
 --portstart arg starting port for automatic port definitions

 Help for Interprocess Broker:

configuration:
 --queueloc arg the named location of the shared queue
 -b [--broker] arg identifier for the broker
 --broker_address arg location of the broker i.e network address
 --brokerinit arg the initialization string for the broker

 Help for Test Broker:

configuration:
 --brokername arg identifier for the broker-same as broker
 -b [--broker] arg identifier for the broker
 --broker_address arg location of the broker i.e network address
 --brokerinit arg the initialization string for the broker

 Help for UDP Broker:

configuration:
 --interface arg the local interface to use for the receive ports
 -b [--broker] arg identifier for the broker
 --broker_address arg location of the broker i.e network address
 --brokerport arg port number for the broker priority port
 --localport arg port number for the local receive port
 --port arg port number for the broker's port
 --portstart arg starting port for automatic port definitions

 Echo

Echo

The Echo application is one of the HELICS apps available with the library
Its purpose is to provide a easy way to generate an echo response to a message
Mainly for testing and demos

Command line arguments

allowed options:

command line only:
 -? [--help] produce help message
 -v [--version] display a version string
 --config-file arg specify a configuration file to use

configuration:
 --local specify otherwise unspecified endpoints and
 publications as local(i.e.the keys will be prepended
 with the echo name
 --stop arg the time to stop the app

configuration:
 -b [--broker] arg address of the broker to connect
 -n [--name] arg name of the player federate
 --corename arg the name of the core to create or find
 -c [--core] arg type of the core to connect to
 --offset arg the offset of the time steps
 --period arg the period of the federate
 --timedelta arg the time delta of the federate
 -i [--coreinit] arg the core initialization string
 --separator arg separator character for local federates
 --inputdelay arg the input delay on incoming communication of the
 federate
 --outputdelay arg the output delay for outgoing communication of the
 federate
 -f [--flags] arg named flag for the federate

configuration:
 --delay arg the delay with which the echo app will echo message

also permissible are all arguments allowed for federates and any specific broker specified:

Command line reference

the echo executable also takes an untagged argument of a file name for example

helics_app echo echo_file.txt --stop 5

The Echo app supports JSON files some examples can be found in

Echo configuration examples [https://github.com/GMLC-TDC/HELICS/tree/helics2/tests/helics/apps/test_files]

the main property of the echo app is the delay time which messages are echoed.

 Tracer

Tracer

The Tracer application is one of the HELICS apps available with the library
Its purpose is to provide a easy way to display data from a federation
It acts as a federate that can “capture” values or messages from specific publications
or direct endpoints or cloned endpoints which exist elsewhere and either trigger callbacks or display it to a screen
The main use is a simple visual indicator and a monitoring app

Command line arguments

allowed options:

command line only:
 -? [--help] produce help message
 -v [--version] display a version string
 --config-file arg specify a configuration file to use

configuration:
 --stop arg the time to stop recording
 --tags arg tags to record, this argument may be specified any
 number of times
 --endpoints arg endpoints to capture, this argument may be specified
 multiple time
 --sourceclone arg existing endpoints to capture generated packets from,
 this argument may be specified multiple time
 --destclone arg existing endpoints to capture all packets with the
 specified endpoint as a destination, this argument may
 be specified multiple time
 --clone arg existing endpoints to clone all packets to and from
 --capture arg capture all the publications of a particular federate
 capture="fed1;fed2" supports multiple arguments or a
 semicolon/comma separated list
 -o [--output] arg the output file for recording the data
 --mapfile arg write progress to a memory mapped file

federate configuration
 -b [--broker] arg address of the broker to connect
 -n [--name] arg name of the player federate
 --corename arg the name of the core to create or find
 -c [--core] arg type of the core to connect to
 --offset arg the offset of the time steps
 --period arg the period of the federate
 --timedelta arg the time delta of the federate
 -i [--coreinit] arg the core initialization string
 --inputdelay arg the input delay on incoming communication of the
 federate
 --outputdelay arg the output delay for outgoing communication of the
 federate
 -f [--flags] arg named flags for the federate

also permissible are all arguments allowed for federates and any specific broker specified:

Command line reference

the tracer executable also takes an untagged argument of a file name for example

helics_app tracer tracer_file.txt --stop 5

Tracers support both delimited text files and JSON files some examples can be found in, they are otherwise the same as options for recorders.

Tracer configuration examples [https://github.com/GMLC-TDC/HELICS/tree/helics/tests/helics/apps/test_files]

Config File Detail

subscriptions

a simple example of a recorder file specifying some subscriptions

#FederateName topic1

sub pub1
subscription pub2

signifies a comment

if only a single column is specified it is assumed to be a subscription

for two column rows the second is the identifier
arguments with spaces should be enclosed in quotes

	interface

	description

	s, sub, subscription

	subscribe to a particular publication

	endpoint, ept, e

	generate an endpoint to capture all targeted packets

	source, sourceclone,src

	capture all messages coming from a particular endpoint

	dest, destination, destclone

	capture all message going to a particular endpoint

	capture

	capture all data coming from a particular federate

	clone

	capture all message going from or to a particular endpoint

for 3 column rows the first must be either clone or capture
for clone the second can be either source or destination and the third the endpoint name
[for capture it can be either “endpoints” or “subscriptions”]

JSON configuration

Tracers can also be specified via JSON files

here are two examples of the text format and equivalent JSON

#list publications and endpoints for a recorder

pub1
pub2
e src1

JSON example

{
 "subscriptions": [
 {
 "key": "pub1",
 "type": "double"
 },
 {
 "key": "pub2",
 "type": "double"
 }
],
 "endpoints": [
 {
 "name": "src1",
 "global": true
 }
]
}

some configuration can also be done through JSON through elements of “stop”,”local”,”separator”,”timeunits”
and file elements can be used to load up additional files

 Broker

Broker

Brokers function as intermediaries or roots in the HELICS hierarchy
The Broker can be run through the helics_broker or via helics-app

Command line arguments

helics_broker term <broker args...> will start a broker and open a terminal control window for the broker run help in a terminal for more commands
helics_broker --autorestart <broker args ...> will start a continually regenerating broker there is a 3 second countdown on broker completion to halt the program via ctrl-C
helics_broker <broker args ..> just starts a broker with the given args and waits for it to complete
allowed options:

command line only:
 -? [--help] produce help message
 -v [--version] display a version string
 --config-file arg specify a configuration file to use

configuration:
 -n [--name] arg name of the broker
 -t [--type] arg type of the broker ("(zmq)", "ipc", "test", "mpi","test", "tcp", "udp")

 Help for Zero MQ Broker:
allowed options:

configuration:
 --interface arg the local interface to use for the receive ports
 -b [--broker] arg identifier for the broker
 --broker_address arg location of the broker i.e network address
 --brokername arg the name of the broker
 --local use local interface(default)
 --ipv4 use external ipv4 addresses
 --ipv6 use external ipv6 addresses
 --external use all external interfaces
 --brokerport arg port number for the broker priority port
 --localport arg port number for the local receive port
 --port arg port number for the broker's port
 --portstart arg starting port for automatic port definitions

 Help for Interprocess Broker:
allowed options:

configuration:
 --queueloc arg the named location of the shared queue
 -b [--broker] arg identifier for the broker
 --broker_address arg location of the broker i.e network address
 --brokerinit arg the initialization string for the broker

 Help for Test Broker:
allowed options:

configuration:
 --brokername arg identifier for the broker-same as broker
 -b [--broker] arg identifier for the broker
 --broker_address arg location of the broker i.e network address
 --brokerinit arg the initialization string for the broker

 Help for TCP Broker:
allowed options:

configuration:
 --interface arg the local interface to use for the receive ports
 -b [--broker] arg identifier for the broker
 --broker_address arg location of the broker i.e network address
 --brokername arg the name of the broker
 --local use local interface(default)
 --ipv4 use external ipv4 addresses
 --ipv6 use external ipv6 addresses
 --external use all external interfaces
 --brokerport arg port number for the broker priority port
 --localport arg port number for the local receive port
 --port arg port number for the broker's port
 --portstart arg starting port for automatic port definitions

 Help for UDP Broker:
allowed options:

configuration:
 --interface arg the local interface to use for the receive ports
 -b [--broker] arg identifier for the broker
 --broker_address arg location of the broker i.e network address
 --brokername arg the name of the broker
 --local use local interface(default)
 --ipv4 use external ipv4 addresses
 --ipv6 use external ipv6 addresses
 --external use all external interfaces
 --brokerport arg port number for the broker priority port
 --localport arg port number for the local receive port
 --port arg port number for the broker's port
 --portstart arg starting port for automatic port definitions

Broker Specific options:

configuration:
 --root specify whether the broker is a root

configuration:
 -n [--name] arg name of the broker/core
 --federates arg the minimum number of federates that will be
 connecting
 --minfed arg the minimum number of federates that will be
 connecting
 --maxiter arg maximum number of iterations
 --logfile arg the file to log message to
 --loglevel arg the level which to log the higher this is set to the
 more gets logs (-1) for no logging
 --fileloglevel arg the level at which messages get sent to the file
 --consoleloglevel arg the level at which message get sent to the console
 --minbrokers arg the minimum number of core/brokers that need to be
 connected (ignored in cores)
 --identifier arg name of the core/broker
 --tick arg number of milliseconds per tick counter if there is no
 broker communication for 2 ticks then secondary actions
 are taken (can also be entered as a time like '10s' or '45ms')
 --dumplog capture a record of all messages and dump a complete log to file or console on termination
 --terminate_on_error Specify that the co-simulation should terminate if any error occurs
 --timeout arg milliseconds to wait for a broker connection (can also
 be entered as a time like '10s' or '45ms')

 --error_timeout arg milliseconds to wait before disconnecting after an error
 (can also be entered as a time like '10s' or '45ms')

If the Broker is started with term as the first option, a terminal is opened for user entry of commands all command line arguments following term are passed to the broker.

starting broker
helics>>help
`quit` -> close the terminal application and wait for broker to finish
`terminate` -> force the broker to stop
`terminate*` -> force the broker to stop and exit application
`help`,`?` -> this help display
`restart` -> restart a completed broker
`status` -> will display the current status of the broker
`info` -> will display info about the broker
`force restart` -> will force terminate a broker and restart it
`query` <queryString> -> will query a broker for <queryString>
`query` <queryTarget> <queryString> -> will query <queryTarget> for <queryString>
helics>>

status will print out current status of the brokers including counts of federates, brokers, and handles

helics>>status
Broker (643204-ibrVd-14EWH-unKfh-hExUP) is connected and is accepting new federates
{"brokers":0,
"federates":0,
"handles":0}
helics>>

info prints out name, connection status, and connection information

helics>>info
Broker (643204-ibrVd-14EWH-unKfh-hExUP) is connected and is accepting new federates
address=tcp://127.0.0.1:23404

The query command allows any query to be executed from the command line, query counts displays the same count numbers as status.

Other available queries are described in Queries.

various restart options are also available, terminate, restart, force restart. And finally quit will exit the terminal and wait for the broker to complete. enter terminate before quit or terminate* to terminate and quit.

 Broker Server

Broker Server

Brokers function as intermediaries or roots in the HELICS hierarchy
The broker server is an executable that can be used to automatically generate brokers on an as needed basis
and coordinate their control and management. It is considered experimental as version 2.2 only works with the ZMQ core type. Future versions will expand this significantly.

Future plans include expanding to all networking core types (ZMQ, ZMQSS, TCP, TCPSS, UDP, and MPI), expanding the abilities of a terminal program and making a Restful interface to the server and underlying brokers.

Command line arguments

The Broker server is a helics broker coordinator that can generate brokers on request
Usage:helics_broker_server [OPTIONS] [config]

Positionals:
 config TEXT load a config file for the broker server

Options:
 -h,-?,--help Print this help message and exit
 -v,--version
 -z,--zmq start a broker-server for the zmq comms in helics
 --zmqss start a broker-server for the zmq single socket comms in helics
 -t,--tcp start a broker-server for the tcp comms in helics
 -u,--udp start a broker-server for the udp comms in helics
 --mpi start a broker-server for the mpi comms in helics
[Option Group: quiet]
 Options:
 --quiet silence most print output

helics broker server command line
helics_broker_server [OPTIONS] [SUBCOMMAND]

Options:
 -h,-?,--help Print this help message and exit
 -v,--version
 --duration TIME=30 minutes specify the length of time the server should run
[Option Group: quiet]
 Options:
 --quiet silence most print output

Subcommands:
 term helics_broker_server term will start a broker server and open a terminal control window for the broker server, run help in a terminal for more commands

helics_broker_server server types starts a broker with the given args and waits for it to complete

If the Broker_server is started with term as the first option, a terminal is opened for user entry of commands all command line arguments following term are passed to the broker.

starting broker Server
servers started
helics-broker-server>>help
`quit` -> close the terminal application and wait for broker to finish
`terminate` -> force the broker server to stop
`terminate*` -> force the broker server to stop and all existing brokers to terminate
`help`,`?` -> this help display

helics-broker-server>>

more commands will be added in future releases

 Clone

Clone

The Clone application is one of the HELICS apps available with the library
Its purpose is to provide a easy way to clone a federate for later playback
It acts as a federate that can “capture” values or messages from a single federate
It also captures the interfaces and subscriptions of a federate and will store
those in a configuration file that can be used by the Player.
The clone app will try to match the federate being cloned as close as possible
in timing of messages and publications and subscriptions. At present it does
not match nameless publications or filters.

Command line arguments

Helics Clone App
Usage: helics_app clone [OPTIONS]

Command line options for the Clone App
Usage: [OPTIONS] [capture]

Positionals:
 capture TEXT name of the federate to clone

Options:
 --allow_iteration allow iteration on values
 -o,--output TEXT=clone.json the output file for recording the data

Options:
 -h,-?,--help Print this help message and exit

also permissible are all arguments allowed for federates and any specific broker specified:

Command line reference

the clone app is accessible through the helics_app

helics_app clone fed1 -o fed1.json -stop 10

output

The Clone app captures output and configuration in a JSON format the Player can read.
All publications of a federate are created as global with the name of the original federate, so a player could be named something
else if desired and not impact the transmission.

 C API Reference

C API Reference

Enum

	
enumerator helics_core_type_default

	a default core type that will default to something available

	
enumerator helics_core_type_http

	a core type using http for communication

	
enumerator helics_core_type_inproc

	an in process core type for handling communications in shared memory it is pretty similar to the test core but stripped from the “test” components

	
enumerator helics_core_type_interprocess

	interprocess uses memory mapped files to transfer data (for use when all federates are on the same machine

	
enumerator helics_core_type_ipc

	interprocess uses memory mapped files to transfer data (for use when all federates are on the same machine ipc is the same as /ref helics_core_type_interprocess

	
enumerator helics_core_type_mpi

	use MPI for operation on a parallel cluster

	
enumerator helics_core_type_nng

	for using the nanomsg communications

	
enumerator helics_core_type_null

	an explicit core type that is recognized but explicitly doesn’t exist, for testing and a few other assorted reasons

	
enumerator helics_core_type_tcp

	use a generic TCP protocol message stream to send messages

	
enumerator helics_core_type_tcp_ss

	a single socket version of the TCP core for more easily handling firewalls

	
enumerator helics_core_type_test

	use the Test core if all federates are in the same process

	
enumerator helics_core_type_udp

	use UDP packets to send the data

	
enumerator helics_core_type_websocket

	a core using websockets for communication

	
enumerator helics_core_type_zmq

	use the Zero MQ networking protocol

	
enumerator helics_core_type_zmq_test

	single socket version of ZMQ core usually for high fed count on the same system

	
enumerator helics_data_type_any

	open type that can be anything

	
enumerator helics_data_type_boolean

	a boolean data type

	
enumerator helics_data_type_complex

	a pair of doubles representing a complex number

	
enumerator helics_data_type_complex_vector

	a complex vector object

	
enumerator helics_data_type_double

	a double precision floating point number

	
enumerator helics_data_type_int

	a 64 bit integer

	
enumerator helics_data_type_named_point

	a named point consisting of a string and a double

	
enumerator helics_data_type_raw

	raw data type

	
enumerator helics_data_type_string

	a sequence of characters

	
enumerator helics_data_type_time

	time data type

	
enumerator helics_data_type_vector

	an array of doubles

	
enumerator helics_error_connection_failure

	the operation to connect has failed

	
enumerator helics_error_discard

	the input was discarded and not used for some reason

	
enumerator helics_error_execution_failure

	the function execution has failed

	
enumerator helics_error_external_type

	an unknown non-helics error was produced

	
enumerator helics_error_fatal

	global fatal error for federation

	
enumerator helics_error_insufficient_space

	insufficient space is available to store requested data

	
enumerator helics_error_invalid_argument

	the parameter passed was invalid and unable to be used

	
enumerator helics_error_invalid_function_call

	the call made was invalid in the present state of the calling object

	
enumerator helics_error_invalid_object

	indicator that the object used was not a valid object

	
enumerator helics_error_invalid_state_transition

	error issued when an invalid state transition occurred

	
enumerator helics_error_other

	the function produced a helics error of some other type

	
enumerator helics_error_registration_failure

	registration has failed

	
enumerator helics_error_system_failure

	the federate has terminated unexpectedly and the call cannot be completed

	
enumerator helics_filter_type_clone

	a filter type that duplicates a message and sends the copy to a different destination

	
enumerator helics_filter_type_custom

	a custom filter type that executes a user defined callback

	
enumerator helics_filter_type_delay

	a filter type that executes a fixed delay on a message

	
enumerator helics_filter_type_firewall

	a customizable filter type that can perform different actions on a message based on firewall like rules

	
enumerator helics_filter_type_random_delay

	a filter type that executes a random delay on the messages

	
enumerator helics_filter_type_random_drop

	a filter type that randomly drops messages

	
enumerator helics_filter_type_reroute

	a filter type that reroutes a message to a different destination than originally specified

	
enumerator helics_flag_delay_init_entry

	used to delay a core from entering initialization mode even if it would otherwise be ready

	
enumerator helics_flag_enable_init_entry

	used to clear the HELICS_DELAY_INIT_ENTRY flag in cores

	
enumerator helics_flag_forward_compute

	flag indicating that a federate performs forward computation and does internal rollback

	
enumerator helics_flag_ignore_time_mismatch_warnings

	used to not display warnings on mismatched requested times

	
enumerator helics_flag_interruptible

	flag indicating that a federate can be interrupted

	
enumerator helics_flag_observer

	flag indicating that a federate is observe only

	
enumerator helics_flag_only_transmit_on_change

	flag indicating a federate/interface should only transmit values if they have changed(binary equivalence)

	
enumerator helics_flag_only_update_on_change

	flag indicating a federate/interface should only trigger an update if a value has changed (binary equivalence)

	
enumerator helics_flag_realtime

	flag indicating that a federate needs to run in real time

	
enumerator helics_flag_restrictive_time_policy

	flag indicating a federate should operate on a restrictive time policy, which disallows some 2nd order time evaluation and can be useful for certain types of dependency cycles and update patterns, but generally shouldn’t be used as it can lead to some very slow update conditions

	
enumerator helics_flag_rollback

	flag indicating that a federate has rollback capability

	
enumerator helics_flag_single_thread_federate

	flag indicating that the federate will only interact on a single thread

	
enumerator helics_flag_slow_responding

	flag specifying that a federate, core, or broker may be slow to respond to pings If the federate goes offline there is no good way to detect it so use with caution

	
enumerator helics_flag_source_only

	flag indicating that a federate/interface is a signal generator only

	
enumerator helics_flag_terminate_on_error

	specify that a federate error should terminate the federation

	
enumerator helics_flag_uninterruptible

	flag indicating that a federate can only return requested times

	
enumerator helics_flag_wait_for_current_time_update

	flag indicating a federate should only grant time if all other federates have already passed the requested time

	
enumerator helics_handle_option_buffer_data

	specify that the last data should be buffered and sent on subscriptions after init

	
enumerator helics_handle_option_connection_optional

	specify that a connection is NOT required for an interface and will only be made if available no warning will be issues if not available

	
enumerator helics_handle_option_connection_required

	specify that a connection is required for an interface and will generate an error if not available

	
enumerator helics_handle_option_ignore_interrupts

	specify that an interface does not participate in determining time interrupts

	
enumerator helics_handle_option_ignore_unit_mismatch

	specify that the mismatching units should be ignored

	
enumerator helics_handle_option_multiple_connections_allowed

	specify that multiple connections are allowed for an interface

	
enumerator helics_handle_option_only_transmit_on_change

	specify that an interface will only transmit on change(only applicable to publications)

	
enumerator helics_handle_option_only_update_on_change

	specify that an interface will only update if the value has actually changed

	
enumerator helics_handle_option_single_connection_only

	specify that only a single connection is allowed for an interface

	
enumerator helics_handle_option_strict_type_checking

	specify that the types should be checked strictly for pub/sub and filters

	
enumerator helics_iteration_request_force_iteration

	force iteration return when able

	
enumerator helics_iteration_request_iterate_if_needed

	only return an iteration if necessary

	
enumerator helics_iteration_request_no_iteration

	no iteration is requested

	
enumerator helics_iteration_result_error

	there was an error

	
enumerator helics_iteration_result_halted

	the federation has halted

	
enumerator helics_iteration_result_iterating

	the federate is iterating at current time

	
enumerator helics_iteration_result_next_step

	the iterations have progressed to the next time

	
enumerator helics_log_level_connections

	summary+ notices about federate and broker connections +messages about network connections

	
enumerator helics_log_level_data

	timing+ data transfer notices

	
enumerator helics_log_level_error

	only print error level indicators

	
enumerator helics_log_level_interfaces

	connections+ interface definitions

	
enumerator helics_log_level_no_print

	don’t print anything except a few catastrophic errors

	
enumerator helics_log_level_summary

	warning errors and summary level information

	
enumerator helics_log_level_timing

	interfaces + timing message

	
enumerator helics_log_level_trace

	all internal messages

	
enumerator helics_log_level_warning

	only print warnings and errors

	
enumerator helics_ok

	the function executed successfully

	
enumerator helics_property_int_console_log_level

	integer property controlling the log level for file logging in a federate see helics_log_levels

	
enumerator helics_property_int_file_log_level

	integer property controlling the log level for file logging in a federate see helics_log_levels

	
enumerator helics_property_int_log_level

	integer property controlling the log level in a federate see helics_log_levels

	
enumerator helics_property_int_max_iterations

	integer property controlling the maximum number of iterations in a federate

	
enumerator helics_property_time_delta

	the property controlling the minimum time delta for a federate

	
enumerator helics_property_time_input_delay

	the property controlling input delay for a federate

	
enumerator helics_property_time_offset

	the property controlling time offset for the period of federate

	
enumerator helics_property_time_output_delay

	the property controlling output delay for a federate

	
enumerator helics_property_time_period

	the property controlling the period for a federate

	
enumerator helics_property_time_rt_lag

	the property controlling real time lag for a federate the max time a federate can lag real time

	
enumerator helics_property_time_rt_lead

	the property controlling real time lead for a federate the max time a federate can be ahead of real time

	
enumerator helics_property_time_rt_tolerance

	the property controlling real time tolerance for a federate sets both rt_lag and rt_lead

	
enumerator helics_state_error

	error state no core communication is possible but values can be retrieved

	
enumerator helics_state_execution

	entered after the enterExectuationState call has returned

	
enumerator helics_state_finalize

	the federate has finished executing normally final values may be retrieved

	
enumerator helics_state_initialization

	entered after the enterInitializingMode call has returned

	
enumerator helics_state_pending_exec

	state pending EnterExecution State

	
enumerator helics_state_pending_finalize

	state that the federate is pending a finalize request

	
enumerator helics_state_pending_init

	indicator that the federate is pending entry to initialization state

	
enumerator helics_state_pending_iterative_time

	state that the federate is pending an iterative time request

	
enumerator helics_state_pending_time

	state that the federate is pending a timeRequest

	
enumerator helics_state_startup

	when created the federate is in startup state

	
enumerator helics_warning

	the function issued a warning of some kind

Functions

	Broker

	Core

	Endpoint

	FederateInfo

	Federate

	Filter

	Input

	Message

	Publication

	Query

Broker

	
void helicsBrokerAddDestinationFilterToEndpoint(helics_broker broker, const char *filter, const char *endpoint, helics_error *err)

	Link a named filter to a destination endpoint.

	Parameters

	
	broker – The broker to generate the connection from.

	filter – The name of the filter (cannot be NULL).

	endpoint – The name of the endpoint to filter the data going to (cannot be NULL). @forcpponly

	err – [inout] A helics_error object, can be NULL if the errors are to be ignored. @endforcpponly

	
void helicsBrokerAddSourceFilterToEndpoint(helics_broker broker, const char *filter, const char *endpoint, helics_error *err)

	Link a named filter to a source endpoint.

	Parameters

	
	broker – The broker to generate the connection from.

	filter – The name of the filter (cannot be NULL).

	endpoint – The name of the endpoint to filter the data from (cannot be NULL). @forcpponly

	err – [inout] A helics_error object, can be NULL if the errors are to be ignored. @endforcpponly

	
helics_broker helicsBrokerClone(helics_broker broker, helics_error *err)

	Create a new reference to an existing broker.

This will create a new broker object that references the existing broker it must be freed as well.

	Parameters

	
	broker – An existing helics_broker. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	A new reference to the same broker.

	
void helicsBrokerDataLink(helics_broker broker, const char *source, const char *target, helics_error *err)

	Link a named publication and named input using a broker.

	Parameters

	
	broker – The broker to generate the connection from.

	source – The name of the publication (cannot be NULL).

	target – The name of the target to send the publication data (cannot be NULL). @forcpponly

	err – [inout] A helics_error object, can be NULL if the errors are to be ignored. @endforcpponly

	
void helicsBrokerDestroy(helics_broker broker)

	Disconnect and free a broker.

	
void helicsBrokerDisconnect(helics_broker broker, helics_error *err)

	Disconnect a broker.

	Parameters

	
	broker – The broker to disconnect. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsBrokerFree(helics_broker broker)

	Release the memory associated with a broker.

	
const char *helicsBrokerGetAddress(helics_broker broker)

	Get the network address associated with a broker.

	Parameters

	broker – The broker to query.

	Returns

	A string with the network address of the broker.

	
const char *helicsBrokerGetIdentifier(helics_broker broker)

	Get an identifier for the broker.

	Parameters

	broker – The broker to query.

	Returns

	A string containing the identifier for the broker.

	
helics_bool helicsBrokerIsConnected(helics_broker broker)

	Check if a broker is connected.

A connected broker implies it is attached to cores or cores could reach out to communicate.

	Returns

	helics_false if not connected.

	
helics_bool helicsBrokerIsValid(helics_broker broker)

	Check if a broker object is a valid object.

	Parameters

	broker – The helics_broker object to test.

	
void helicsBrokerMakeConnections(helics_broker broker, const char *file, helics_error *err)

	Load a file containing connection information.

	Parameters

	
	broker – The broker to generate the connections from.

	file – A JSON or TOML file containing connection information. @forcpponly

	err – [inout] A helics_error object, can be NULL if the errors are to be ignored. @endforcpponly

	
void helicsBrokerSetGlobal(helics_broker broker, const char *valueName, const char *value, helics_error *err)

	Set a federation global value.

This overwrites any previous value for this name.

	Parameters

	
	broker – The broker to set the global through.

	valueName – The name of the global to set.

	value – The value of the global. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsBrokerSetLogFile(helics_broker broker, const char *logFileName, helics_error *err)

	Set the log file on a broker.

	Parameters

	
	broker – The broker to set the log file for.

	logFileName – The name of the file to log to. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
helics_bool helicsBrokerWaitForDisconnect(helics_broker broker, int msToWait, helics_error *err)

	Wait for the broker to disconnect.

	Parameters

	
	broker – The broker to wait for.

	msToWait – The time out in millisecond (<0 for infinite timeout). @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	helics_true if the disconnect was successful, helics_false if there was a timeout.

	
void helicsBrokerSetLoggingCallback(helics_broker broker, void (*logger)(int loglevel, const char *identifier, const char *message, void *userData), void *userdata, helics_error *err)

	Set the logging callback to a broker.

Add a logging callback function to a broker. The logging callback will be called when a message flows into a broker from the core or from a broker.

	Parameters

	
	broker – The broker object in which to set the callback.

	logger – A callback with signature void(int, const char *, const char *, void *); the function arguments are loglevel, an identifier, a message string, and a pointer to user data.

	userdata – A pointer to user data that is passed to the function when executing. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

Core

	
void helicsCoreAddDestinationFilterToEndpoint(helics_core core, const char *filter, const char *endpoint, helics_error *err)

	Link a named filter to a destination endpoint.

	Parameters

	
	core – The core to generate the connection from.

	filter – The name of the filter (cannot be NULL).

	endpoint – The name of the endpoint to filter the data going to (cannot be NULL). @forcpponly

	err – [inout] A helics_error object, can be NULL if the errors are to be ignored. @endforcpponly

	
void helicsCoreAddSourceFilterToEndpoint(helics_core core, const char *filter, const char *endpoint, helics_error *err)

	Link a named filter to a source endpoint.

	Parameters

	
	core – The core to generate the connection from.

	filter – The name of the filter (cannot be NULL).

	endpoint – The name of the endpoint to filter the data from (cannot be NULL). @forcpponly

	err – [inout] A helics_error object, can be NULL if the errors are to be ignored. @endforcpponly

	
helics_core helicsCoreClone(helics_core core, helics_error *err)

	Create a new reference to an existing core.

This will create a new broker object that references the existing broker. The new broker object must be freed as well.

	Parameters

	
	core – An existing helics_core. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	A new reference to the same broker.

	
helics_bool helicsCoreConnect(helics_core core, helics_error *err)

	Connect a core to the federate based on current configuration.

	Parameters

	
	core – The core to connect. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	helics_false if not connected, helics_true if it is connected.

	
void helicsCoreDataLink(helics_core core, const char *source, const char *target, helics_error *err)

	Link a named publication and named input using a core.

	Parameters

	
	core – The core to generate the connection from.

	source – The name of the publication (cannot be NULL).

	target – The name of the target to send the publication data (cannot be NULL). @forcpponly

	err – [inout] A helics_error object, can be NULL if the errors are to be ignored. @endforcpponly

	
void helicsCoreDestroy(helics_core core)

	Disconnect and free a core.

	
void helicsCoreDisconnect(helics_core core, helics_error *err)

	Disconnect a core from the federation.

	Parameters

	
	core – The core to query. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsCoreFree(helics_core core)

	Release the memory associated with a core.

	
const char *helicsCoreGetAddress(helics_core core)

	Get the network address associated with a core.

	Parameters

	core – The core to query.

	Returns

	A string with the network address of the broker.

	
const char *helicsCoreGetIdentifier(helics_core core)

	Get an identifier for the core.

	Parameters

	core – The core to query.

	Returns

	A string with the identifier of the core.

	
helics_bool helicsCoreIsConnected(helics_core core)

	Check if a core is connected.

A connected core implies it is attached to federates or federates could be attached to it

	Returns

	helics_false if not connected, helics_true if it is connected.

	
helics_bool helicsCoreIsValid(helics_core core)

	Check if a core object is a valid object.

	Parameters

	core – The helics_core object to test.

	
void helicsCoreMakeConnections(helics_core core, const char *file, helics_error *err)

	Load a file containing connection information.

	Parameters

	
	core – The core to generate the connections from.

	file – A JSON or TOML file containing connection information. @forcpponly

	err – [inout] A helics_error object, can be NULL if the errors are to be ignored. @endforcpponly

	
helics_filter helicsCoreRegisterCloningFilter(helics_core core, const char *name, helics_error *err)

	Create a cloning Filter on the specified core.

Cloning filters copy a message and send it to multiple locations, source and destination can be added through other functions.

	Parameters

	
	core – The core to register through.

	name – The name of the filter (can be NULL). @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	A helics_filter object.

	
helics_filter helicsCoreRegisterFilter(helics_core core, helics_filter_type type, const char *name, helics_error *err)

	Create a source Filter on the specified core.

Filters can be created through a federate or a core, linking through a federate allows a few extra features of name matching to function on the federate interface but otherwise equivalent behavior.

	Parameters

	
	core – The core to register through.

	type – The type of filter to create /ref helics_filter_type.

	name – The name of the filter (can be NULL). @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	A helics_filter object.

	
void helicsCoreSetGlobal(helics_core core, const char *valueName, const char *value, helics_error *err)

	Set a global value in a core.

This overwrites any previous value for this name.

	Parameters

	
	core – The core to set the global through.

	valueName – The name of the global to set.

	value – The value of the global. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsCoreSetLogFile(helics_core core, const char *logFileName, helics_error *err)

	Set the log file on a core.

	Parameters

	
	core – The core to set the log file for.

	logFileName – The name of the file to log to. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsCoreSetReadyToInit(helics_core core, helics_error *err)

	Set the core to ready for init.

This function is used for cores that have filters but no federates so there needs to be a direct signal to the core to trigger the federation initialization.

	Parameters

	
	core – The core object to enable init values for. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
helics_bool helicsCoreWaitForDisconnect(helics_core core, int msToWait, helics_error *err)

	Wait for the core to disconnect.

	Parameters

	
	core – The core to wait for.

	msToWait – The time out in millisecond (<0 for infinite timeout). @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	helics_true if the disconnect was successful, helics_false if there was a timeout.

	
void helicsCoreSetLoggingCallback(helics_core core, void (*logger)(int loglevel, const char *identifier, const char *message, void *userData), void *userdata, helics_error *err)

	Set the logging callback for a core.

Add a logging callback function to a core. The logging callback will be called when a message flows into a core from the core or from a broker.

	Parameters

	
	core – The core object in which to set the callback.

	logger – A callback with signature void(int, const char *, const char *, void *); The function arguments are loglevel, an identifier, a message string, and a pointer to user data.

	userdata – A pointer to user data that is passed to the function when executing. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

Endpoint

Warning

doxygenfunction: Unable to resolve function “helicsEndpointClearMessages” with arguments “None”.
Candidate function could not be parsed. Parsing error is
Error when parsing function declaration.
If the function has no return type:
 Error in declarator or parameters-and-qualifiers
 Invalid C++ declaration: Expecting “(” in parameters-and-qualifiers. [error at 25]
 HELICS_DEPRECATED_EXPORT void helicsEndpointClearMessages (helics_endpoint endpoint)
 ————————-^
If the function has a return type:
 Error in declarator or parameters-and-qualifiers
 If pointer to member declarator:
 Invalid C++ declaration: Expected identifier in nested name, got keyword: void [error at 29]
 HELICS_DEPRECATED_EXPORT void helicsEndpointClearMessages (helics_endpoint endpoint)
 —————————–^
 If declarator-id:
 Invalid C++ declaration: Expected identifier in nested name, got keyword: void [error at 29]
 HELICS_DEPRECATED_EXPORT void helicsEndpointClearMessages (helics_endpoint endpoint)
 —————————–^

	
helics_message_object helicsEndpointCreateMessageObject(helics_endpoint endpoint, helics_error *err)

	Create a new empty message object.

The message is empty and isValid will return false since there is no data associated with the message yet.

	Parameters

	
	endpoint – The endpoint object to associate the message with. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	Returns

	A new helics_message_object.

	
const char *helicsEndpointGetDefaultDestination(helics_endpoint endpoint)

	Get the default destination for an endpoint.

	Parameters

	endpoint – The endpoint to set the destination for.

	Returns

	A string with the default destination.

	
const char *helicsEndpointGetInfo(helics_endpoint end)

	Get the data in the info field of a filter.

	Parameters

	end – The filter to query.

	Returns

	A string with the info field string.

Warning

doxygenfunction: Unable to resolve function “helicsEndpointGetMessage” with arguments “None”.
Candidate function could not be parsed. Parsing error is
Error when parsing function declaration.
If the function has no return type:
 Error in declarator or parameters-and-qualifiers
 Invalid C++ declaration: Expecting “(” in parameters-and-qualifiers. [error at 25]
 HELICS_DEPRECATED_EXPORT helics_message helicsEndpointGetMessage (helics_endpoint endpoint)
 ————————-^
If the function has a return type:
 Error in declarator or parameters-and-qualifiers
 If pointer to member declarator:
 Invalid C++ declaration: Expected ‘::’ in pointer to member (function). [error at 40]
 HELICS_DEPRECATED_EXPORT helics_message helicsEndpointGetMessage (helics_endpoint endpoint)
 —————————————-^
 If declarator-id:
 Invalid C++ declaration: Expecting “(” in parameters-and-qualifiers. [error at 40]
 HELICS_DEPRECATED_EXPORT helics_message helicsEndpointGetMessage (helics_endpoint endpoint)
 —————————————-^

	
helics_message_object helicsEndpointGetMessageObject(helics_endpoint endpoint)

	Receive a packet from a particular endpoint.

	Parameters

	endpoint – [in] The identifier for the endpoint.

	Returns

	A message object.

	
const char *helicsEndpointGetName(helics_endpoint endpoint)

	Get the name of an endpoint.

	Parameters

	endpoint – The endpoint object in question.

	Returns

	The name of the endpoint.

	
int helicsEndpointGetOption(helics_endpoint endpoint, int option)

	Set a handle option on an endpoint.

	Parameters

	
	endpoint – The endpoint to modify.

	option – Integer code for the option to set /ref helics_handle_options.

	Returns

	the value of the option, for boolean options will be 0 or 1

	
const char *helicsEndpointGetType(helics_endpoint endpoint)

	Get the type specified for an endpoint.

	Parameters

	endpoint – The endpoint object in question.

	Returns

	The defined type of the endpoint.

	
helics_bool helicsEndpointHasMessage(helics_endpoint endpoint)

	Check if a given endpoint has any unread messages.

	Parameters

	endpoint – The endpoint to check.

	Returns

	helics_true if the endpoint has a message, helics_false otherwise.

	
helics_bool helicsEndpointIsValid(helics_endpoint endpoint)

	Check if an endpoint is valid.

	Parameters

	endpoint – The endpoint object to check.

	Returns

	helics_true if the Endpoint object represents a valid endpoint.

Warning

doxygenfunction: Unable to resolve function “helicsEndpointPendingMessages” with arguments “None”.
Candidate function could not be parsed. Parsing error is
Error when parsing function declaration.
If the function has no return type:
 Error in declarator or parameters-and-qualifiers
 Invalid C++ declaration: Expecting “(” in parameters-and-qualifiers. [error at 25]
 HELICS_DEPRECATED_EXPORT int helicsEndpointPendingMessages (helics_endpoint endpoint)
 ————————-^
If the function has a return type:
 Error in declarator or parameters-and-qualifiers
 If pointer to member declarator:
 Invalid C++ declaration: Expected identifier in nested name, got keyword: int [error at 28]
 HELICS_DEPRECATED_EXPORT int helicsEndpointPendingMessages (helics_endpoint endpoint)
 —————————-^
 If declarator-id:
 Invalid C++ declaration: Expected identifier in nested name, got keyword: int [error at 28]
 HELICS_DEPRECATED_EXPORT int helicsEndpointPendingMessages (helics_endpoint endpoint)
 —————————-^

	
void helicsEndpointSendEventRaw(helics_endpoint endpoint, const char *dst, const void *data, int inputDataLength, helics_time time, helics_error *err)

	Send a message at a specific time to the specified destination.

	Parameters

	
	endpoint – The endpoint to send the data from.

	dst – The target destination. @forcpponly nullptr to use the default destination. @endforcpponly @beginpythononly “” to use the default destination. @endpythononly

	data – The data to send. @forcpponly

	inputDataLength – The length of the data to send. @endforcpponly

	time – The time the message should be sent. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

Warning

doxygenfunction: Unable to resolve function “helicsEndpointSendMessage” with arguments “None”.
Candidate function could not be parsed. Parsing error is
Error when parsing function declaration.
If the function has no return type:
 Error in declarator or parameters-and-qualifiers
 Invalid C++ declaration: Expecting “(” in parameters-and-qualifiers. [error at 25]
 HELICS_DEPRECATED_EXPORT void helicsEndpointSendMessage (helics_endpoint endpoint, helics_message *message, helics_error *err)
 ————————-^
If the function has a return type:
 Error in declarator or parameters-and-qualifiers
 If pointer to member declarator:
 Invalid C++ declaration: Expected identifier in nested name, got keyword: void [error at 29]
 HELICS_DEPRECATED_EXPORT void helicsEndpointSendMessage (helics_endpoint endpoint, helics_message *message, helics_error *err)
 —————————–^
 If declarator-id:
 Invalid C++ declaration: Expected identifier in nested name, got keyword: void [error at 29]
 HELICS_DEPRECATED_EXPORT void helicsEndpointSendMessage (helics_endpoint endpoint, helics_message *message, helics_error *err)
 —————————–^

	
void helicsEndpointSendMessageObject(helics_endpoint endpoint, helics_message_object message, helics_error *err)

	Send a message object from a specific endpoint.

	Parameters

	
	endpoint – The endpoint to send the data from.

	message – The actual message to send which will be copied. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsEndpointSendMessageObjectZeroCopy(helics_endpoint endpoint, helics_message_object message, helics_error *err)

	Send a message object from a specific endpoint, the message will not be copied and the message object will no longer be valid after the call.

	Parameters

	
	endpoint – The endpoint to send the data from.

	message – The actual message to send which will be copied. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsEndpointSendMessageRaw(helics_endpoint endpoint, const char *dst, const void *data, int inputDataLength, helics_error *err)

	Send a message to the specified destination.

	Parameters

	
	endpoint – The endpoint to send the data from.

	dst – The target destination. @forcpponly nullptr to use the default destination. @endforcpponly @beginpythononly “” to use the default destination. @endpythononly

	data – The data to send. @forcpponly

	inputDataLength – The length of the data to send.

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsEndpointSetDefaultDestination(helics_endpoint endpoint, const char *dst, helics_error *err)

	Set the default destination for an endpoint if no other endpoint is given.

	Parameters

	
	endpoint – The endpoint to set the destination for.

	dst – A string naming the desired default endpoint. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsEndpointSetInfo(helics_endpoint endpoint, const char *info, helics_error *err)

	Set the data in the info field for a filter.

	Parameters

	
	endpoint – The endpoint to query.

	info – The string to set. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	
void helicsEndpointSetOption(helics_endpoint endpoint, int option, int value, helics_error *err)

	Set a handle option on an endpoint.

	Parameters

	
	endpoint – The endpoint to modify.

	option – Integer code for the option to set /ref helics_handle_options.

	value – The value to set the option to. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	
void helicsEndpointSubscribe(helics_endpoint endpoint, const char *key, helics_error *err)

	Subscribe an endpoint to a publication.

	Parameters

	
	endpoint – The endpoint to use.

	key – The name of the publication. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

FederateInfo

	
helics_federate_info helicsFederateInfoClone(helics_federate_info fi, helics_error *err)

	Create a federate info object from an existing one and clone the information.

	Parameters

	
	fi – A federateInfo object to duplicate. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	A helics_federate_info object which is a reference to the created object.

	
void helicsFederateInfoFree(helics_federate_info fi)

	Delete the memory associated with a federate info object.

	
void helicsFederateInfoLoadFromArgs(helics_federate_info fi, int argc, const char *const *argv, helics_error *err)

	Load federate info from command line arguments.

	Parameters

	
	fi – A federateInfo object.

	argc – The number of command line arguments.

	argv – An array of strings from the command line. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateInfoSetBroker(helics_federate_info fi, const char *broker, helics_error *err)

	Set the name or connection information for a broker.

This is only used if the core is automatically created, the broker information will be transferred to the core for connection.

	Parameters

	
	fi – The federate info object to alter.

	broker – A string which defines the connection information for a broker either a name or an address. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateInfoSetBrokerInitString(helics_federate_info fi, const char *brokerInit, helics_error *err)

	Set the initialization string that a core will pass to a generated broker usually in the form of command line arguments.

	Parameters

	
	fi – The federate info object to alter.

	brokerInit – A string with command line arguments for a generated broker. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateInfoSetBrokerKey(helics_federate_info fi, const char *brokerkey, helics_error *err)

	Set the key for a broker connection.

This is only used if the core is automatically created, the broker information will be transferred to the core for connection.

	Parameters

	
	fi – The federate info object to alter.

	brokerkey – A string containing a key for the broker to connect. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateInfoSetBrokerPort(helics_federate_info fi, int brokerPort, helics_error *err)

	Set the port to use for the broker.

This is only used if the core is automatically created, the broker information will be transferred to the core for connection. This will only be useful for network broker connections.

	Parameters

	
	fi – The federate info object to alter.

	brokerPort – The integer port number to use for connection with a broker. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateInfoSetCoreInitString(helics_federate_info fi, const char *coreInit, helics_error *err)

	Set the initialization string for the core usually in the form of command line arguments.

	Parameters

	
	fi – The federate info object to alter.

	coreInit – A string containing command line arguments to be passed to the core. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateInfoSetCoreName(helics_federate_info fi, const char *corename, helics_error *err)

	Set the name of the core to link to for a federate.

	Parameters

	
	fi – The federate info object to alter.

	corename – The identifier for a core to link to. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateInfoSetCoreType(helics_federate_info fi, int coretype, helics_error *err)

	Set the core type by integer code.

Valid values available by definitions in api-data.h.

	Parameters

	
	fi – The federate info object to alter.

	coretype – An numerical code for a core type see /ref helics_core_type. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateInfoSetCoreTypeFromString(helics_federate_info fi, const char *coretype, helics_error *err)

	Set the core type from a string.

	Parameters

	
	fi – The federate info object to alter.

	coretype – A string naming a core type. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateInfoSetFlagOption(helics_federate_info fi, int flag, helics_bool value, helics_error *err)

	Set a flag in the info structure.

Valid flags are available /ref helics_federate_flags.

	Parameters

	
	fi – The federate info object to alter.

	flag – A numerical index for a flag.

	value – The desired value of the flag helics_true or helics_false. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateInfoSetIntegerProperty(helics_federate_info fi, int intProperty, int propertyValue, helics_error *err)

	Set an integer property for a federate.

Set known properties.

	Parameters

	
	fi – The federateInfo object to alter.

	intProperty – An int identifying the property.

	propertyValue – The value to set the property to. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateInfoSetLocalPort(helics_federate_info fi, const char *localPort, helics_error *err)

	Set the local port to use.

This is only used if the core is automatically created, the port information will be transferred to the core for connection.

	Parameters

	
	fi – The federate info object to alter.

	localPort – A string with the port information to use as the local server port can be a number or “auto” or “os_local”. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateInfoSetSeparator(helics_federate_info fi, char separator, helics_error *err)

	Set the separator character in the info structure.

The separator character is the separation character for local publications/endpoints in creating their global name. For example if the separator character is ‘/’ then a local endpoint would have a globally reachable name of fedName/localName.

	Parameters

	
	fi – The federate info object to alter.

	separator – The character to use as a separator. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateInfoSetTimeProperty(helics_federate_info fi, int timeProperty, helics_time propertyValue, helics_error *err)

	Set the output delay for a federate.

	Parameters

	
	fi – The federate info object to alter.

	timeProperty – An integer representation of the time based property to set see /ref helics_properties.

	propertyValue – The value of the property to set the timeProperty to. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

Federate

	
void helicsFederateAddDependency(helics_federate fed, const char *fedName, helics_error *err)

	Add a time dependency for a federate. The federate will depend on the given named federate for time synchronization.

	Parameters

	
	fed – The federate to add the dependency for.

	fedName – The name of the federate to depend on. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsFederateClearMessages(helics_federate fed)

	Clear all stored messages from a federate.

This clears messages retrieved through helicsFederateGetMessage or helicsFederateGetMessageObject

	Parameters

	fed – The federate to clear the message for.

	
void helicsFederateClearUpdates(helics_federate fed)

	Clear all the update flags from a federates inputs.

	Parameters

	fed – The value federate object for which to clear update flags.

	
helics_federate helicsFederateClone(helics_federate fed, helics_error *err)

	Create a new reference to an existing federate.

This will create a new helics_federate object that references the existing federate. The new object must be freed as well.

	Parameters

	
	fed – An existing helics_federate. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	A new reference to the same federate.

	
helics_message_object helicsFederateCreateMessageObject(helics_federate fed, helics_error *err)

	Create a new empty message object.

The message is empty and isValid will return false since there is no data associated with the message yet.

	Parameters

	
	fed – the federate object to associate the message with @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	Returns

	A helics_message_object containing the message data.

	
void helicsFederateDestroy(helics_federate fed)

	Disconnect and free a federate.

	
void helicsFederateEnterExecutingMode(helics_federate fed, helics_error *err)

	Request that the federate enter the Execution mode.

This call is blocking until granted entry by the core object. On return from this call the federate will be at time 0. For an asynchronous alternative call see /ref helicsFederateEnterExecutingModeAsync.

	Parameters

	
	fed – A federate to change modes. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateEnterExecutingModeAsync(helics_federate fed, helics_error *err)

	Request that the federate enter the Execution mode.

This call is non-blocking and will return immediately. Call /ref helicsFederateEnterExecutingModeComplete to finish the call sequence.

	Parameters

	
	fed – The federate object to complete the call. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateEnterExecutingModeComplete(helics_federate fed, helics_error *err)

	Complete the call to /ref helicsFederateEnterExecutingModeAsync.

	Parameters

	
	fed – The federate object to complete the call. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
helics_iteration_result helicsFederateEnterExecutingModeIterative(helics_federate fed, helics_iteration_request iterate, helics_error *err)

	Request an iterative time.

This call allows for finer grain control of the iterative process than /ref helicsFederateRequestTime. It takes a time and iteration request, and returns a time and iteration status.

	Parameters

	
	fed – The federate to make the request of.

	iterate – The requested iteration mode. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	An iteration structure with field containing the time and iteration status.

	
void helicsFederateEnterExecutingModeIterativeAsync(helics_federate fed, helics_iteration_request iterate, helics_error *err)

	Request an iterative entry to the execution mode.

This call allows for finer grain control of the iterative process than /ref helicsFederateRequestTime. It takes a time and iteration request, and returns a time and iteration status

	Parameters

	
	fed – The federate to make the request of.

	iterate – The requested iteration mode. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
helics_iteration_result helicsFederateEnterExecutingModeIterativeComplete(helics_federate fed, helics_error *err)

	Complete the asynchronous iterative call into ExecutionMode.

	Parameters

	
	fed – The federate to make the request of. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	An iteration object containing the iteration time and iteration_status.

	
void helicsFederateEnterInitializingMode(helics_federate fed, helics_error *err)

	Enter the initialization state of a federate.

The initialization state allows initial values to be set and received if the iteration is requested on entry to the execution state. This is a blocking call and will block until the core allows it to proceed.

	Parameters

	
	fed – The federate to operate on. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateEnterInitializingModeAsync(helics_federate fed, helics_error *err)

	Non blocking alternative to helicsFederateEnterInitializingMode.

The function helicsFederateEnterInitializationModeFinalize must be called to finish the operation.

	Parameters

	
	fed – The federate to operate on. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateEnterInitializingModeComplete(helics_federate fed, helics_error *err)

	Finalize the entry to initialize mode that was initiated with /ref heliceEnterInitializingModeAsync.

	Parameters

	
	fed – The federate desiring to complete the initialization step. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateFinalize(helics_federate fed, helics_error *err)

	Finalize the federate. This function halts all communication in the federate and disconnects it from the core.

	
void helicsFederateFinalizeAsync(helics_federate fed, helics_error *err)

	Finalize the federate in an async call.

	
void helicsFederateFinalizeComplete(helics_federate fed, helics_error *err)

	Complete the asynchronous finalize call.

	
void helicsFederateFree(helics_federate fed)

	Release the memory associated with a federate.

	
helics_core helicsFederateGetCoreObject(helics_federate fed, helics_error *err)

	Get the core object associated with a federate.

	Parameters

	
	fed – A federate object. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	A core object, nullptr if invalid.

	
helics_time helicsFederateGetCurrentTime(helics_federate fed, helics_error *err)

	Get the current time of the federate.

	Parameters

	
	fed – The federate object to query. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	The current time of the federate.

	
helics_endpoint helicsFederateGetEndpoint(helics_federate fed, const char *name, helics_error *err)

	Get an endpoint object from a name.

	Parameters

	
	fed – The message federate object to use to get the endpoint.

	name – The name of the endpoint. @forcpponly

	err – [inout] The error object to complete if there is an error. @endforcpponly

	Returns

	A helics_endpoint object. @forcpponly The object will not be valid and err will contain an error code if no endpoint with the specified name exists. @endforcpponly

	
helics_endpoint helicsFederateGetEndpointByIndex(helics_federate fed, int index, helics_error *err)

	Get an endpoint by its index, typically already created via registerInterfaces file or something of that nature.

	Parameters

	
	fed – The federate object in which to create a publication.

	index – The index of the publication to get. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	A helics_endpoint. @forcpponly It will be NULL if given an invalid index. @endforcpponly

	
int helicsFederateGetEndpointCount(helics_federate fed)

	Get the number of endpoints in a federate.

	Parameters

	fed – The message federate to query.

	Returns

	(-1) if fed was not a valid federate, otherwise returns the number of endpoints.

	
helics_filter helicsFederateGetFilter(helics_federate fed, const char *name, helics_error *err)

	Get a filter by its name, typically already created via registerInterfaces file or something of that nature.

	Parameters

	
	fed – The federate object to use to get the filter.

	name – The name of the filter. @forcpponly

	err – [inout] The error object to complete if there is an error. @endforcpponly

	Returns

	A helics_filter object, the object will not be valid and err will contain an error code if no filter with the specified name exists.

	
helics_filter helicsFederateGetFilterByIndex(helics_federate fed, int index, helics_error *err)

	Get a filter by its index, typically already created via registerInterfaces file or something of that nature.

	Parameters

	
	fed – The federate object in which to create a publication.

	index – The index of the publication to get. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	A helics_filter, which will be NULL if an invalid index is given.

	
int helicsFederateGetFilterCount(helics_federate fed)

	Get the number of filters registered through a federate.

	Parameters

	fed – The federate object to use to get the filter.

	Returns

	A count of the number of filters registered through a federate.

	
helics_bool helicsFederateGetFlagOption(helics_federate fed, int flag, helics_error *err)

	Get a flag value for a federate.

	Parameters

	
	fed – The federate to get the flag for.

	flag – The flag to query. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	The value of the flag.

	
helics_input helicsFederateGetInput(helics_federate fed, const char *key, helics_error *err)

	Get an input object from a key.

	Parameters

	
	fed – The value federate object to use to get the publication.

	key – The name of the input. @forcpponly

	err – [inout] The error object to complete if there is an error. @endforcpponly

	Returns

	A helics_input object, the object will not be valid and err will contain an error code if no input with the specified key exists.

	
helics_input helicsFederateGetInputByIndex(helics_federate fed, int index, helics_error *err)

	Get an input by its index, typically already created via registerInterfaces file or something of that nature.

	Parameters

	
	fed – The federate object in which to create a publication.

	index – The index of the publication to get. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	A helics_input, which will be NULL if an invalid index.

	
int helicsFederateGetInputCount(helics_federate fed)

	Get the number of subscriptions in a federate.

	Returns

	(-1) if fed was not a valid federate otherwise returns the number of subscriptions.

	
int helicsFederateGetIntegerProperty(helics_federate fed, int intProperty, helics_error *err)

	Get the current value of an integer property (such as a logging level).

	Parameters

	
	fed – The federate to get the flag for.

	intProperty – A code for the property to set /ref helics_handle_options. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	The value of the property.

Warning

doxygenfunction: Unable to resolve function “helicsFederateGetMessage” with arguments “None”.
Candidate function could not be parsed. Parsing error is
Error when parsing function declaration.
If the function has no return type:
 Error in declarator or parameters-and-qualifiers
 Invalid C++ declaration: Expecting “(” in parameters-and-qualifiers. [error at 25]
 HELICS_DEPRECATED_EXPORT helics_message helicsFederateGetMessage (helics_federate fed)
 ————————-^
If the function has a return type:
 Error in declarator or parameters-and-qualifiers
 If pointer to member declarator:
 Invalid C++ declaration: Expected ‘::’ in pointer to member (function). [error at 40]
 HELICS_DEPRECATED_EXPORT helics_message helicsFederateGetMessage (helics_federate fed)
 —————————————-^
 If declarator-id:
 Invalid C++ declaration: Expecting “(” in parameters-and-qualifiers. [error at 40]
 HELICS_DEPRECATED_EXPORT helics_message helicsFederateGetMessage (helics_federate fed)
 —————————————-^

	
helics_message_object helicsFederateGetMessageObject(helics_federate fed)

	Receive a communication message for any endpoint in the federate.

The return order will be in order of endpoint creation. So all messages that are available for the first endpoint, then all for the second, and so on. Within a single endpoint, the messages are ordered by time, then source_id, then order of arrival.

	Returns

	A helics_message_object which references the data in the message.

	
const char *helicsFederateGetName(helics_federate fed)

	Get the name of the federate.

	Parameters

	fed – The federate object to query.

	Returns

	A pointer to a string with the name.

	
helics_publication helicsFederateGetPublication(helics_federate fed, const char *key, helics_error *err)

	Get a publication object from a key.

	Parameters

	
	fed – The value federate object to use to get the publication.

	key – The name of the publication. @forcpponly

	err – [inout] The error object to complete if there is an error. @endforcpponly

	Returns

	A helics_publication object, the object will not be valid and err will contain an error code if no publication with the specified key exists.

	
helics_publication helicsFederateGetPublicationByIndex(helics_federate fed, int index, helics_error *err)

	Get a publication by its index, typically already created via registerInterfaces file or something of that nature.

	Parameters

	
	fed – The federate object in which to create a publication.

	index – The index of the publication to get. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	A helics_publication.

	
int helicsFederateGetPublicationCount(helics_federate fed)

	Get the number of publications in a federate.

	Returns

	(-1) if fed was not a valid federate otherwise returns the number of publications.

	
helics_federate_state helicsFederateGetState(helics_federate fed, helics_error *err)

	Get the current state of a federate.

	Parameters

	
	fed – The federate to query. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	State the resulting state if void return helics_ok.

	
helics_input helicsFederateGetSubscription(helics_federate fed, const char *key, helics_error *err)

	Get an input object from a subscription target.

	Parameters

	
	fed – The value federate object to use to get the publication.

	key – The name of the publication that a subscription is targeting. @forcpponly

	err – [inout] The error object to complete if there is an error. @endforcpponly

	Returns

	A helics_input object, the object will not be valid and err will contain an error code if no input with the specified key exists.

	
helics_time helicsFederateGetTimeProperty(helics_federate fed, int timeProperty, helics_error *err)

	Get the current value of a time based property in a federate.

	Parameters

	
	fed – The federate query.

	timeProperty – The property to query. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateGlobalError(helics_federate fed, int errorCode, const char *errorString)

	Generate a global error from a federate.

A global error halts the co-simulation completely.

	Parameters

	
	fed – The federate to create an error in.

	errorCode – The integer code for the error.

	errorString – A string describing the error.

	
helics_bool helicsFederateHasMessage(helics_federate fed)

	Check if the federate has any outstanding messages.

	Parameters

	fed – The federate to check.

	Returns

	helics_true if the federate has a message waiting, helics_false otherwise.

	
helics_bool helicsFederateIsAsyncOperationCompleted(helics_federate fed, helics_error *err)

	Check if the current Asynchronous operation has completed.

	Parameters

	
	fed – The federate to operate on. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	helics_false if not completed, helics_true if completed.

	
helics_bool helicsFederateIsValid(helics_federate fed)

	Check if a federate_object is valid.

	Returns

	helics_true if the federate is a valid active federate, helics_false otherwise

	
void helicsFederateLocalError(helics_federate fed, int errorCode, const char *errorString)

	Generate a local error in a federate.

This will propagate through the co-simulation but not necessarily halt the co-simulation, it has a similar effect to finalize but does allow some interaction with a core for a brief time.

	Parameters

	
	fed – The federate to create an error in.

	errorCode – The integer code for the error.

	errorString – A string describing the error.

	
void helicsFederateLogDebugMessage(helics_federate fed, const char *logmessage, helics_error *err)

	Log a debug message through a federate.

	Parameters

	
	fed – The federate to log the debug message through.

	logmessage – The message to put in the log. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsFederateLogErrorMessage(helics_federate fed, const char *logmessage, helics_error *err)

	Log an error message through a federate.

	Parameters

	
	fed – The federate to log the error message through.

	logmessage – The message to put in the log. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsFederateLogInfoMessage(helics_federate fed, const char *logmessage, helics_error *err)

	Log an info message through a federate.

	Parameters

	
	fed – The federate to log the info message through.

	logmessage – The message to put in the log. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsFederateLogLevelMessage(helics_federate fed, int loglevel, const char *logmessage, helics_error *err)

	Log a message through a federate.

	Parameters

	
	fed – The federate to log the message through.

	loglevel – The level of the message to log see /ref helics_log_levels.

	logmessage – The message to put in the log. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsFederateLogWarningMessage(helics_federate fed, const char *logmessage, helics_error *err)

	Log a warning message through a federate.

	Parameters

	
	fed – The federate to log the warning message through.

	logmessage – The message to put in the log. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

Warning

doxygenfunction: Unable to resolve function “helicsFederatePendingMessages” with arguments “None”.
Candidate function could not be parsed. Parsing error is
Error when parsing function declaration.
If the function has no return type:
 Error in declarator or parameters-and-qualifiers
 Invalid C++ declaration: Expecting “(” in parameters-and-qualifiers. [error at 25]
 HELICS_DEPRECATED_EXPORT int helicsFederatePendingMessages (helics_federate fed)
 ————————-^
If the function has a return type:
 Error in declarator or parameters-and-qualifiers
 If pointer to member declarator:
 Invalid C++ declaration: Expected identifier in nested name, got keyword: int [error at 28]
 HELICS_DEPRECATED_EXPORT int helicsFederatePendingMessages (helics_federate fed)
 —————————-^
 If declarator-id:
 Invalid C++ declaration: Expected identifier in nested name, got keyword: int [error at 28]
 HELICS_DEPRECATED_EXPORT int helicsFederatePendingMessages (helics_federate fed)
 —————————-^

	
void helicsFederatePublishJSON(helics_federate fed, const char *json, helics_error *err)

	Publish data contained in a JSON file or string.

	Parameters

	
	fed – The value federate object through which to publish the data.

	json – The publication file name or literal JSON data string. @forcpponly

	err – [inout] The error object to complete if there is an error. @endforcpponly

	
helics_filter helicsFederateRegisterCloningFilter(helics_federate fed, const char *name, helics_error *err)

	Create a cloning Filter on the specified federate.

Cloning filters copy a message and send it to multiple locations, source and destination can be added through other functions.

	Parameters

	
	fed – The federate to register through.

	name – The name of the filter (can be NULL). @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	A helics_filter object.

	
helics_endpoint helicsFederateRegisterEndpoint(helics_federate fed, const char *name, const char *type, helics_error *err)

	Create an endpoint.

The endpoint becomes part of the federate and is destroyed when the federate is freed so there are no separate free functions for endpoints.

	Parameters

	
	fed – The federate object in which to create an endpoint must have been created with helicsCreateMessageFederate or helicsCreateCombinationFederate.

	name – The identifier for the endpoint. This will be prepended with the federate name for the global identifier.

	type – A string describing the expected type of the publication (may be NULL). @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	An object containing the endpoint. @forcpponly nullptr on failure. @endforcpponly

	
helics_filter helicsFederateRegisterFilter(helics_federate fed, helics_filter_type type, const char *name, helics_error *err)

	Create a source Filter on the specified federate.

Filters can be created through a federate or a core, linking through a federate allows a few extra features of name matching to function on the federate interface but otherwise equivalent behavior

	Parameters

	
	fed – The federate to register through.

	type – The type of filter to create /ref helics_filter_type.

	name – The name of the filter (can be NULL). @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	A helics_filter object.

	
void helicsFederateRegisterFromPublicationJSON(helics_federate fed, const char *json, helics_error *err)

	Register the publications via JSON publication string.

This would be the same JSON that would be used to publish data.

	Parameters

	
	fed – The value federate object to use to register the publications.

	json – The JSON publication string. @forcpponly

	err – [inout] The error object to complete if there is an error. @endforcpponly

	
helics_filter helicsFederateRegisterGlobalCloningFilter(helics_federate fed, const char *name, helics_error *err)

	Create a global cloning Filter on the specified federate.

Cloning filters copy a message and send it to multiple locations, source and destination can be added through other functions.

	Parameters

	
	fed – The federate to register through.

	name – The name of the filter (can be NULL). @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	A helics_filter object.

	
helics_endpoint helicsFederateRegisterGlobalEndpoint(helics_federate fed, const char *name, const char *type, helics_error *err)

	Create an endpoint.

The endpoint becomes part of the federate and is destroyed when the federate is freed so there are no separate free functions for endpoints.

	Parameters

	
	fed – The federate object in which to create an endpoint must have been created with helicsCreateMessageFederate or helicsCreateCombinationFederate.

	name – The identifier for the endpoint, the given name is the global identifier.

	type – A string describing the expected type of the publication (may be NULL). @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	An object containing the endpoint. @forcpponly nullptr on failure. @endforcpponly

	
helics_filter helicsFederateRegisterGlobalFilter(helics_federate fed, helics_filter_type type, const char *name, helics_error *err)

	Create a global source filter through a federate.

Filters can be created through a federate or a core, linking through a federate allows a few extra features of name matching to function on the federate interface but otherwise equivalent behavior.

	Parameters

	
	fed – The federate to register through.

	type – The type of filter to create /ref helics_filter_type.

	name – The name of the filter (can be NULL). @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	A helics_filter object.

	
helics_publication helicsFederateRegisterGlobalInput(helics_federate fed, const char *key, helics_data_type type, const char *units, helics_error *err)

	Register a global named input.

The publication becomes part of the federate and is destroyed when the federate is freed so there are no separate free functions for subscriptions and publications.

	Parameters

	
	fed – The federate object in which to create a publication.

	key – The identifier for the publication.

	type – A code identifying the type of the input see /ref helics_data_type for available options.

	units – A string listing the units of the subscription maybe NULL. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	An object containing the publication.

	
helics_publication helicsFederateRegisterGlobalPublication(helics_federate fed, const char *key, helics_data_type type, const char *units, helics_error *err)

	Register a global named publication with an arbitrary type.

The publication becomes part of the federate and is destroyed when the federate is freed so there are no separate free functions for subscriptions and publications.

	Parameters

	
	fed – The federate object in which to create a publication.

	key – The identifier for the publication.

	type – A code identifying the type of the input see /ref helics_data_type for available options.

	units – A string listing the units of the subscription (may be NULL). @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	An object containing the publication.

	
helics_publication helicsFederateRegisterGlobalTypeInput(helics_federate fed, const char *key, const char *type, const char *units, helics_error *err)

	Register a global publication with an arbitrary type.

The publication becomes part of the federate and is destroyed when the federate is freed so there are no separate free functions for subscriptions and publications.

	Parameters

	
	fed – The federate object in which to create a publication.

	key – The identifier for the publication.

	type – A string defining the type of the input.

	units – A string listing the units of the subscription maybe NULL. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	An object containing the publication.

	
helics_publication helicsFederateRegisterGlobalTypePublication(helics_federate fed, const char *key, const char *type, const char *units, helics_error *err)

	Register a global publication with a defined type.

The publication becomes part of the federate and is destroyed when the federate is freed so there are no separate free functions for subscriptions and publications.

	Parameters

	
	fed – The federate object in which to create a publication.

	key – The identifier for the publication.

	type – A string describing the expected type of the publication.

	units – A string listing the units of the subscription (may be NULL). @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	An object containing the publication.

	
helics_input helicsFederateRegisterInput(helics_federate fed, const char *key, helics_data_type type, const char *units, helics_error *err)

	Register a named input.

The input becomes part of the federate and is destroyed when the federate is freed so there are no separate free functions for subscriptions, inputs, and publications.

	Parameters

	
	fed – The federate object in which to create an input.

	key – The identifier for the publication the global input key will be prepended with the federate name.

	type – A code identifying the type of the input see /ref helics_data_type for available options.

	units – A string listing the units of the input (may be NULL). @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	An object containing the input.

	
void helicsFederateRegisterInterfaces(helics_federate fed, const char *file, helics_error *err)

	Load interfaces from a file.

	Parameters

	
	fed – The federate to which to load interfaces.

	file – The name of a file to load the interfaces from either JSON, or TOML. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
helics_publication helicsFederateRegisterPublication(helics_federate fed, const char *key, helics_data_type type, const char *units, helics_error *err)

	Register a publication with a known type.

The publication becomes part of the federate and is destroyed when the federate is freed so there are no separate free functions for subscriptions and publications.

	Parameters

	
	fed – The federate object in which to create a publication.

	key – The identifier for the publication the global publication key will be prepended with the federate name.

	type – A code identifying the type of the input see /ref helics_data_type for available options.

	units – A string listing the units of the subscription (may be NULL). @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	An object containing the publication.

	
helics_input helicsFederateRegisterSubscription(helics_federate fed, const char *key, const char *units, helics_error *err)

	sub/pub registration Create a subscription.

The subscription becomes part of the federate and is destroyed when the federate is freed so there are no separate free functions for subscriptions and publications.

	Parameters

	
	fed – The federate object in which to create a subscription, must have been created with /ref helicsCreateValueFederate or /ref helicsCreateCombinationFederate.

	key – The identifier matching a publication to get a subscription for.

	units – A string listing the units of the subscription (may be NULL). @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	An object containing the subscription.

	
helics_input helicsFederateRegisterTypeInput(helics_federate fed, const char *key, const char *type, const char *units, helics_error *err)

	Register an input with a defined type.

The input becomes part of the federate and is destroyed when the federate is freed so there are no separate free functions for subscriptions, inputs, and publications.

	Parameters

	
	fed – The federate object in which to create an input.

	key – The identifier for the input.

	type – A string describing the expected type of the input.

	units – A string listing the units of the input maybe NULL. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	An object containing the publication.

	
helics_publication helicsFederateRegisterTypePublication(helics_federate fed, const char *key, const char *type, const char *units, helics_error *err)

	Register a publication with a defined type.

The publication becomes part of the federate and is destroyed when the federate is freed so there are no separate free functions for subscriptions and publications.

	Parameters

	
	fed – The federate object in which to create a publication.

	key – The identifier for the publication.

	type – A string labeling the type of the publication.

	units – A string listing the units of the subscription (may be NULL). @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	An object containing the publication.

	
helics_time helicsFederateRequestNextStep(helics_federate fed, helics_error *err)

	Request the next time step for federate execution.

Feds should have setup the period or minDelta for this to work well but it will request the next time step which is the current time plus the minimum time step.

	Parameters

	
	fed – The federate to make the request of. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	The time granted to the federate, will return helics_time_maxtime if the simulation has terminated or is invalid

	
helics_time helicsFederateRequestTime(helics_federate fed, helics_time requestTime, helics_error *err)

	Request the next time for federate execution.

	Parameters

	
	fed – The federate to make the request of.

	requestTime – The next requested time. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	The time granted to the federate, will return helics_time_maxtime if the simulation has terminated or is invalid.

	
helics_time helicsFederateRequestTimeAdvance(helics_federate fed, helics_time timeDelta, helics_error *err)

	Request the next time for federate execution.

	Parameters

	
	fed – The federate to make the request of.

	timeDelta – The requested amount of time to advance. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	The time granted to the federate, will return helics_time_maxtime if the simulation has terminated or is invalid

	
void helicsFederateRequestTimeAsync(helics_federate fed, helics_time requestTime, helics_error *err)

	Request the next time for federate execution in an asynchronous call.

Call /ref helicsFederateRequestTimeComplete to finish the call.

	Parameters

	
	fed – The federate to make the request of.

	requestTime – The next requested time. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
helics_time helicsFederateRequestTimeComplete(helics_federate fed, helics_error *err)

	Complete an asynchronous requestTime call.

	Parameters

	
	fed – The federate to make the request of. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	The time granted to the federate, will return helics_time_maxtime if the simulation has terminated.

	
helics_time helicsFederateRequestTimeIterative(helics_federate fed, helics_time requestTime, helics_iteration_request iterate, helics_iteration_result *outIteration, helics_error *err)

	Request an iterative time.

This call allows for finer grain control of the iterative process than /ref helicsFederateRequestTime. It takes a time and and iteration request, and returns a time and iteration status.

	Parameters

	
	fed – The federate to make the request of.

	requestTime – The next desired time.

	iterate – The requested iteration mode. @forcpponly

	outIteration – [out] The iteration specification of the result. @endforcpponly @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	The granted time, will return helics_time_maxtime if the simulation has terminated along with the appropriate iteration result. @beginPythonOnly This function also returns the iteration specification of the result. @endPythonOnly

	
void helicsFederateRequestTimeIterativeAsync(helics_federate fed, helics_time requestTime, helics_iteration_request iterate, helics_error *err)

	Request an iterative time through an asynchronous call.

This call allows for finer grain control of the iterative process than /ref helicsFederateRequestTime. It takes a time and iteration request, and returns a time and iteration status. Call /ref helicsFederateRequestTimeIterativeComplete to finish the process.

	Parameters

	
	fed – The federate to make the request of.

	requestTime – The next desired time.

	iterate – The requested iteration mode. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
helics_time helicsFederateRequestTimeIterativeComplete(helics_federate fed, helics_iteration_result *outIterate, helics_error *err)

	Complete an iterative time request asynchronous call.

	Parameters

	
	fed – The federate to make the request of. @forcpponly

	outIterate – [out] The iteration specification of the result.

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	The granted time, will return helics_time_maxtime if the simulation has terminated. @beginPythonOnly This function also returns the iteration specification of the result. @endPythonOnly

	
void helicsFederateSetFlagOption(helics_federate fed, int flag, helics_bool flagValue, helics_error *err)

	Set a flag for the federate.

	Parameters

	
	fed – The federate to alter a flag for.

	flag – The flag to change.

	flagValue – The new value of the flag. 0 for false, !=0 for true. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateSetGlobal(helics_federate fed, const char *valueName, const char *value, helics_error *err)

	Set a federation global value through a federate.

This overwrites any previous value for this name.

	Parameters

	
	fed – The federate to set the global through.

	valueName – The name of the global to set.

	value – The value of the global. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsFederateSetIntegerProperty(helics_federate fed, int intProperty, int propertyVal, helics_error *err)

	Set an integer based property of a federate.

	Parameters

	
	fed – The federate to change the property for.

	intProperty – The property to set.

	propertyVal – The value of the property. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateSetLogFile(helics_federate fed, const char *logFile, helics_error *err)

	Set the logging file for a federate (actually on the core associated with a federate).

	Parameters

	
	fed – The federate to set the log file for.

	logFile – The name of the log file. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsFederateSetSeparator(helics_federate fed, char separator, helics_error *err)

	Set the separator character in a federate.

The separator character is the separation character for local publications/endpoints in creating their global name. For example if the separator character is ‘/’ then a local endpoint would have a globally reachable name of fedName/localName.

	Parameters

	
	fed – The federate info object to alter.

	separator – The character to use as a separator. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsFederateSetTimeProperty(helics_federate fed, int timeProperty, helics_time time, helics_error *err)

	Set a time based property for a federate.

	Parameters

	
	fed – The federate object to set the property for.

	timeProperty – A integer code for a time property.

	time – The requested value of the property. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

Warning

doxygenfunction: Cannot find function “helicsFederateEnterInitializingModeCompleted” in doxygen xml output for project “helics” from directory: /home/docs/checkouts/readthedocs.org/user_builds/helics/checkouts/helics2/build-doxygen/docs/xml

	
void helicsFederateSetLoggingCallback(helics_federate fed, void (*logger)(int loglevel, const char *identifier, const char *message, void *userData), void *userdata, helics_error *err)

	Set the logging callback for a federate.

Add a logging callback function to a federate. The logging callback will be called when a message flows into a federate from the core or from a federate.

	Parameters

	
	fed – The federate object in which to create a subscription must have been created with helicsCreateValueFederate or helicsCreateCombinationFederate.

	logger – A callback with signature void(int, const char *, const char *, void *); The function arguments are loglevel, an identifier string, a message string, and a pointer to user data.

	userdata – A pointer to user data that is passed to the function when executing. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

Filter

	
void helicsFilterAddDeliveryEndpoint(helics_filter filt, const char *deliveryEndpoint, helics_error *err)

	Add a delivery endpoint to a cloning filter.

All cloned messages are sent to the delivery address(es).

	Parameters

	
	filt – The given filter.

	deliveryEndpoint – The name of the endpoint to deliver messages to. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsFilterAddDestinationTarget(helics_filter filt, const char *dst, helics_error *err)

	Add a destination target to a filter.

All messages going to a destination are copied to the delivery address(es).

	Parameters

	
	filt – The given filter to add a destination target to.

	dst – The name of the endpoint to add as a destination target. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsFilterAddSourceTarget(helics_filter filt, const char *source, helics_error *err)

	Add a source target to a filter.

All messages coming from a source are copied to the delivery address(es).

	Parameters

	
	filt – The given filter.

	source – The name of the endpoint to add as a source target. @forcpponly.

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
const char *helicsFilterGetInfo(helics_filter filt)

	Get the data in the info field of a filter.

	Parameters

	filt – The given filter.

	Returns

	A string with the info field string.

	
const char *helicsFilterGetName(helics_filter filt)

	Get the name of the filter and store in the given string.

get the name of the filter

	Parameters

	filt – The given filter.

	Returns

	A string with the name of the filter.

	
int helicsFilterGetOption(helics_filter filt, int option)

	Get a handle option for the filter.

	Parameters

	
	filt – The given filter to query.

	option – The option to query /ref helics_handle_options.

	
helics_bool helicsFilterIsValid(helics_filter filt)

	Check if a filter is valid.

	Parameters

	filt – The filter object to check.

	Returns

	helics_true if the Filter object represents a valid filter.

	
void helicsFilterRemoveDeliveryEndpoint(helics_filter filt, const char *deliveryEndpoint, helics_error *err)

	Remove a delivery destination from a cloning filter.

	Parameters

	
	filt – The given filter (must be a cloning filter).

	deliveryEndpoint – A string with the delivery endpoint to remove. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsFilterRemoveTarget(helics_filter filt, const char *target, helics_error *err)

	Remove a destination target from a filter.

	Parameters

	
	filt – The given filter.

	target – The named endpoint to remove as a target. @forcpponly @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsFilterSet(helics_filter filt, const char *prop, double val, helics_error *err)

	Set a property on a filter.

	Parameters

	
	filt – The filter to modify.

	prop – A string containing the property to set.

	val – A numerical value for the property. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsFilterSetInfo(helics_filter filt, const char *info, helics_error *err)

	Set the data in the info field for a filter.

	Parameters

	
	filt – The given filter.

	info – The string to set. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	
void helicsFilterSetOption(helics_filter filt, int option, int value, helics_error *err)

	Set the data in the info field for a filter.

	Parameters

	
	filt – The given filter.

	option – The option to set /ref helics_handle_options.

	value – The value of the option commonly 0 for false 1 for true. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	
void helicsFilterSetString(helics_filter filt, const char *prop, const char *val, helics_error *err)

	Set a string property on a filter.

	Parameters

	
	filt – The filter to modify.

	prop – A string containing the property to set.

	val – A string containing the new value. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsFilterSetCustomCallback(helics_filter filter, void (*filtCall)(helics_message_object message, void *userData), void *userdata, helics_error *err)

	Set a general callback for a custom filter.

Add a custom filter callback for creating a custom filter operation in the C shared library.

	Parameters

	
	filter – The filter object to set the callback for.

	filtCall – A callback with signature helics_message_object(helics_message_object, void *); The function arguments are the message to filter and a pointer to user data. The filter should return a new message.

	userdata – A pointer to user data that is passed to the function when executing. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

Input

	
void helicsInputAddTarget(helics_input ipt, const char *target, helics_error *err)

	Add a publication to the list of data that an input subscribes to.

	Parameters

	
	ipt – The named input to modify.

	target – The name of a publication that an input should subscribe to. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsInputClearUpdate(helics_input ipt)

	Clear the updated flag from an input.

	
helics_bool helicsInputGetBoolean(helics_input ipt, helics_error *err)

	Get a boolean value from a subscription.

	Parameters

	
	ipt – The input to get the data for. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	A boolean value of current input value.

	
char helicsInputGetChar(helics_input ipt, helics_error *err)

	Get a single character value from an input.

	Parameters

	
	ipt – The input to get the data for. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	The resulting character value. @forcpponly NAK (negative acknowledgment) symbol returned on error @endforcpponly

	
void helicsInputGetComplex(helics_input ipt, double *real, double *imag, helics_error *err)

	Get a pair of double forming a complex number from a subscriptions.

@beginPythonOnly

	Parameters

	
	ipt – The input to get the data for. @forcpponly

	real – [out] Memory location to place the real part of a value.

	imag – [out] Memory location to place the imaginary part of a value.

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. On error the values will not be altered. @endforcpponly

	Returns

	a pair of floating point values that represent the real and imag values @endPythonOnly

	
helics_complex helicsInputGetComplexObject(helics_input ipt, helics_error *err)

	Get a complex object from an input object.

	Parameters

	
	ipt – The input to get the data for. @forcpponly

	err – [inout] A helics error object, if the object is not empty the function is bypassed otherwise it is filled in if there is an error. @endforcpponly

	Returns

	A helics_complex structure with the value.

	
double helicsInputGetDouble(helics_input ipt, helics_error *err)

	Get a double value from a subscription.

	Parameters

	
	ipt – The input to get the data for. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	The double value of the input.

	
const char *helicsInputGetExtractionUnits(helics_input ipt)

	Get the units of an input.

The same as helicsInputGetUnits.

	Parameters

	ipt – The input to query.

	Returns

	A void enumeration, helics_ok if everything worked.

	
const char *helicsInputGetInfo(helics_input inp)

	Get the data in the info field of an input.

	Parameters

	inp – The input to query.

	Returns

	A string with the info field string.

	
const char *helicsInputGetInjectionUnits(helics_input ipt)

	Get the units of the publication that an input is linked to.

	Parameters

	ipt – The input to query.

	Returns

	A void enumeration, helics_ok if everything worked.

	
int64_t helicsInputGetInteger(helics_input ipt, helics_error *err)

	Get an integer value from a subscription.

	Parameters

	
	ipt – The input to get the data for. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	An int64_t value with the current value of the input.

	
const char *helicsInputGetKey(helics_input ipt)

	Get the key of an input.

	Parameters

	ipt – The input to query.

	Returns

	A void enumeration, helics_ok if everything worked.

	
void helicsInputGetNamedPoint(helics_input ipt, char *outputString, int maxStringLength, int *actualLength, double *val, helics_error *err)

	Get a named point from a subscription.

@beginPythonOnly

	Parameters

	
	ipt – The input to get the result for. @forcpponly

	outputString – [out] Storage for copying a null terminated string.

	maxStringLength – The maximum size of information that str can hold.

	actualLength – [out] The actual length of the string

	val – [out] The double value for the named point.

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	a string and a double value for the named point @endPythonOnly

	
int helicsInputGetOption(helics_input inp, int option)

	Get the current value of an input handle option

	Parameters

	
	inp – The input to query.

	option – Integer representation of the option in question see /ref helics_handle_options.

	Returns

	An integer value with the current value of the given option.

	
const char *helicsInputGetPublicationType(helics_input ipt)

	Get the type the publisher to an input is sending.

	Parameters

	ipt – The input to query.

	Returns

	A const char * with the type name.

	
void helicsInputGetRawValue(helics_input ipt, void *data, int maxDataLength, int *actualSize, helics_error *err)

	Get the raw data for the latest value of a subscription.

@beginPythonOnly

	Parameters

	
	ipt – The input to get the data for. @forcpponly

	data – [out] The memory location of the data

	maxDataLength – The maximum size of information that data can hold.

	actualSize – [out] The actual length of data copied to data.

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	Raw string data. @endPythonOnly

	
int helicsInputGetRawValueSize(helics_input ipt)

	Get the size of the raw value for subscription.

	Returns

	The size of the raw data/string in bytes.

	
void helicsInputGetString(helics_input ipt, char *outputString, int maxStringLength, int *actualLength, helics_error *err)

	Get a string value from a subscription.

@beginPythonOnly

	Parameters

	
	ipt – The input to get the data for. @forcpponly

	outputString – [out] Storage for copying a null terminated string.

	maxStringLength – The maximum size of information that str can hold.

	actualLength – [out] The actual length of the string.

	err – [inout] Error term for capturing errors. @endforcpponly

	Returns

	A string data @endPythonOnly

	
int helicsInputGetStringSize(helics_input ipt)

	Get the size of a value for subscription assuming return as a string.

	Returns

	The size of the string.

	
helics_time helicsInputGetTime(helics_input ipt, helics_error *err)

	Get a time value from a subscription.

	Parameters

	
	ipt – The input to get the data for. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	The resulting time value.

	
const char *helicsInputGetType(helics_input ipt)

	Get the type of an input.

	Parameters

	ipt – The input to query.

	Returns

	A void enumeration, helics_ok if everything worked.

	
const char *helicsInputGetUnits(helics_input ipt)

	Get the units of an input.

	Parameters

	ipt – The input to query.

	Returns

	A void enumeration, helics_ok if everything worked.

	
void helicsInputGetVector(helics_input ipt, double data[], int maxLength, int *actualSize, helics_error *err)

	Get a vector from a subscription.

@beginPythonOnly

	Parameters

	
	ipt – The input to get the result for. @forcpponly

	data – [out] The location to store the data.

	maxLength – The maximum size of the vector.

	actualSize – [out] Location to place the actual length of the resulting vector.

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	a list of floating point values @endPythonOnly

	
int helicsInputGetVectorSize(helics_input ipt)

	Get the size of a value for subscription assuming return as an array of doubles.

	Returns

	The number of doubles in a returned vector.

	
helics_bool helicsInputIsUpdated(helics_input ipt)

	Check if a particular subscription was updated.

	Returns

	helics_true if it has been updated since the last value retrieval.

	
helics_bool helicsInputIsValid(helics_input ipt)

	Check if an input is valid.

	Parameters

	ipt – The input to check.

	Returns

	helics_true if the Input object represents a valid input.

	
helics_time helicsInputLastUpdateTime(helics_input ipt)

	Get the last time a subscription was updated.

	
void helicsInputSetDefaultBoolean(helics_input ipt, helics_bool val, helics_error *err)

	Set the default as a boolean.

	Parameters

	
	ipt – The input to set the default for.

	val – The default boolean value. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsInputSetDefaultChar(helics_input ipt, char val, helics_error *err)

	Set the default as a char.

	Parameters

	
	ipt – The input to set the default for.

	val – The default char value. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsInputSetDefaultComplex(helics_input ipt, double real, double imag, helics_error *err)

	Set the default as a complex number.

	Parameters

	
	ipt – The input to set the default for.

	real – The default real value.

	imag – The default imaginary value. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsInputSetDefaultDouble(helics_input ipt, double val, helics_error *err)

	Set the default as a double.

	Parameters

	
	ipt – The input to set the default for.

	val – The default double value. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsInputSetDefaultInteger(helics_input ipt, int64_t val, helics_error *err)

	Set the default as an integer.

	Parameters

	
	ipt – The input to set the default for.

	val – The default integer. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsInputSetDefaultNamedPoint(helics_input ipt, const char *str, double val, helics_error *err)

	Set the default as a NamedPoint.

	Parameters

	
	ipt – The input to set the default for.

	str – A pointer to a string representing the name.

	val – A double value for the value of the named point. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsInputSetDefaultRaw(helics_input ipt, const void *data, int inputDataLength, helics_error *err)

	Set the default as a raw data array.

	Parameters

	
	ipt – The input to set the default for.

	data – A pointer to the raw data to use for the default. @forcpponly

	inputDataLength – The size of the raw data.

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsInputSetDefaultString(helics_input ipt, const char *str, helics_error *err)

	Set the default as a string.

	Parameters

	
	ipt – The input to set the default for.

	str – A pointer to the default string. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsInputSetDefaultTime(helics_input ipt, helics_time val, helics_error *err)

	Set the default as a time.

	Parameters

	
	ipt – The input to set the default for.

	val – The default time value. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsInputSetDefaultVector(helics_input ipt, const double *vectorInput, int vectorLength, helics_error *err)

	Set the default as a vector of doubles.

	Parameters

	
	ipt – The input to set the default for.

	vectorInput – A pointer to an array of double data.

	vectorLength – The number of points to publish. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsInputSetInfo(helics_input inp, const char *info, helics_error *err)

	Set the data in the info field for an input.

	Parameters

	
	inp – The input to query.

	info – The string to set. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	
void helicsInputSetMinimumChange(helics_input inp, double tolerance, helics_error *err)

	Set the minimum change detection tolerance.

	Parameters

	
	inp – The input to modify.

	tolerance – The tolerance level for registering an update, values changing less than this value will not show as being updated. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	
void helicsInputSetOption(helics_input inp, int option, int value, helics_error *err)

	Set an option on an input

	Parameters

	
	inp – The input to query.

	option – The option to set for the input /ref helics_handle_options.

	value – The value to set the option to. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

Message

	
void helicsMessageAppendData(helics_message_object message, const void *data, int inputDataLength, helics_error *err)

	Append data to the payload.

	Parameters

	
	message – The message object in question.

	data – A string containing the message data to append.

	inputDataLength – The length of the data to input. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	
helics_bool helicsMessageCheckFlag(helics_message_object message, int flag)

	Check if a flag is set on a message.

	Parameters

	
	message – The message object in question.

	flag – The flag to check should be between [0,15].

	Returns

	The flags associated with a message.

	
void helicsMessageClearFlags(helics_message_object message)

	Clear the flags of a message.

	Parameters

	message – The message object in question

	
helics_message_object helicsMessageClone(helics_message_object message, helics_error *err)

	Clone a message object.

	Parameters

	
	message – The message object to copy from. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	
void helicsMessageCopy(helics_message_object src_message, helics_message_object dst_message, helics_error *err)

	Copy a message object.

	Parameters

	
	src_message – The message object to copy from.

	dst_message – The message object to copy to. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	
void helicsMessageFree(helics_message_object message)

	Free a message object from memory

memory for message is managed so not using this function does not create memory leaks, this is an indication to the system that the memory for this message is done being used and can be reused for a new message.

helicsFederateClearMessages() can also be used to clear up all stored messages at once

	Parameters

	message – The message object to copy from.

	
const char *helicsMessageGetDestination(helics_message_object message)

	Get the destination endpoint of a message.

	Parameters

	message – The message object in question.

	Returns

	A string with the destination endpoint.

	
int helicsMessageGetMessageID(helics_message_object message)

	Get the messageID of a message.

	Parameters

	message – The message object in question.

	Returns

	The messageID.

	
const char *helicsMessageGetOriginalDestination(helics_message_object message)

	Get the original destination endpoint of a message, the destination may have been modified by filters or other actions.

	Parameters

	message – The message object in question.

	Returns

	A string with the original destination of a message.

	
const char *helicsMessageGetOriginalSource(helics_message_object message)

	Get the original source endpoint of a message, the source may have been modified by filters or other actions.

	Parameters

	message – The message object in question.

	Returns

	A string with the source of a message.

	
void helicsMessageGetRawData(helics_message_object message, void *data, int maxMessageLength, int *actualSize, helics_error *err)

	Get the raw data for a message object.

@beginPythonOnly

	Parameters

	
	message – A message object to get the data for. @forcpponly

	data – [out] The memory location of the data.

	maxMessageLength – The maximum size of information that data can hold.

	actualSize – [out] The actual length of data copied to data.

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	Returns

	Raw string data. @endPythonOnly

	
int helicsMessageGetRawDataSize(helics_message_object message)

	Get the size of the data payload in bytes.

	Parameters

	message – The message object in question.

	Returns

	The size of the data payload.

	
const char *helicsMessageGetSource(helics_message_object message)

	Get the source endpoint of a message.

	Parameters

	message – The message object in question.

	Returns

	A string with the source endpoint.

	
const char *helicsMessageGetString(helics_message_object message)

	Get the payload of a message as a string.

	Parameters

	message – The message object in question.

	Returns

	A string representing the payload of a message.

	
helics_time helicsMessageGetTime(helics_message_object message)

	Get the helics time associated with a message.

	Parameters

	message – The message object in question.

	Returns

	The time associated with a message.

	
helics_bool helicsMessageIsValid(helics_message_object message)

	A check if the message contains a valid payload.

	Parameters

	message – The message object in question.

	Returns

	helics_true if the message contains a payload.

	
void helicsMessageReserve(helics_message_object message, int reserveSize, helics_error *err)

	Reserve space in a buffer but don’t actually resize.

The message data buffer will be reserved but not resized.

	Parameters

	
	message – The message object in question.

	reserveSize – The number of bytes to reserve in the message object. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	
void helicsMessageSetData(helics_message_object message, const void *data, int inputDataLength, helics_error *err)

	Set the data payload of a message as raw data.

	Parameters

	
	message – The message object in question.

	data – A string containing the message data.

	inputDataLength – The length of the data to input. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	
void helicsMessageSetDestination(helics_message_object message, const char *dst, helics_error *err)

	Set the destination of a message.

	Parameters

	
	message – The message object in question.

	dst – A string containing the new destination. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	
void helicsMessageSetFlagOption(helics_message_object message, int flag, helics_bool flagValue, helics_error *err)

	Set a flag on a message.

	Parameters

	
	message – The message object in question.

	flag – An index of a flag to set on the message.

	flagValue – The desired value of the flag. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	
void helicsMessageSetMessageID(helics_message_object message, int32_t messageID, helics_error *err)

	Set the message ID for the message.

Normally this is not needed and the core of HELICS will adjust as needed.

	Parameters

	
	message – The message object in question.

	messageID – A new message ID. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	
void helicsMessageSetOriginalDestination(helics_message_object message, const char *dst, helics_error *err)

	Set the original destination of a message.

	Parameters

	
	message – The message object in question.

	dst – A string containing the new original source. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	
void helicsMessageSetOriginalSource(helics_message_object message, const char *src, helics_error *err)

	Set the original source of a message.

	Parameters

	
	message – The message object in question.

	src – A string containing the new original source. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	
void helicsMessageSetSource(helics_message_object message, const char *src, helics_error *err)

	Set the source of a message.

	Parameters

	
	message – The message object in question.

	src – A string containing the source. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	
void helicsMessageSetString(helics_message_object message, const char *str, helics_error *err)

	Set the data payload of a message as a string.

	Parameters

	
	message – The message object in question.

	str – A string containing the message data. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	
void helicsMessageSetTime(helics_message_object message, helics_time time, helics_error *err)

	Set the delivery time for a message.

	Parameters

	
	message – The message object in question.

	time – The time the message should be delivered. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	
void *helicsMessageGetRawDataPointer(helics_message_object message)

	Get a pointer to the raw data of a message.

	Parameters

	message – A message object to get the data for.

	Returns

	A pointer to the raw data in memory, the pointer may be NULL if the message is not a valid message.

Warning

doxygenfunction: Cannot find function “helicsMessageSetOrginalSource” in doxygen xml output for project “helics” from directory: /home/docs/checkouts/readthedocs.org/user_builds/helics/checkouts/helics2/build-doxygen/docs/xml

	
void helicsMessageResize(helics_message_object message, int newSize, helics_error *err)

	Resize the data buffer for a message.

The message data buffer will be resized. There are no guarantees on what is in the buffer in newly allocated space. If the allocated space is not sufficient new allocations will occur.

	Parameters

	
	message – The message object in question.

	newSize – The new size in bytes of the buffer. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

Publication

	
void helicsPublicationAddTarget(helics_publication pub, const char *target, helics_error *err)

	Add a named input to the list of targets a publication publishes to.

	Parameters

	
	pub – The publication to add the target for.

	target – The name of an input that the data should be sent to. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
const char *helicsPublicationGetInfo(helics_publication pub)

	Get the data in the info field of an publication.

	Parameters

	pub – The publication to query.

	Returns

	A string with the info field string.

	
const char *helicsPublicationGetKey(helics_publication pub)

	Get the key of a publication.

This will be the global key used to identify the publication to the federation.

	Parameters

	pub – The publication to query.

	Returns

	A void enumeration, helics_ok if everything worked.

	
int helicsPublicationGetOption(helics_publication pub, int option)

	Get the value of an option for a publication

	Parameters

	
	pub – The publication to query.

	option – The value to query see /ref helics_handle_options.

	Returns

	A string with the info field string.

	
const char *helicsPublicationGetType(helics_publication pub)

	Get the type of a publication.

	Parameters

	pub – The publication to query.

	Returns

	A void enumeration, helics_ok if everything worked.

	
const char *helicsPublicationGetUnits(helics_publication pub)

	Get the units of a publication.

	Parameters

	pub – The publication to query.

	Returns

	A void enumeration, helics_ok if everything worked.

	
helics_bool helicsPublicationIsValid(helics_publication pub)

	Check if a publication is valid.

	Parameters

	pub – The publication to check.

	Returns

	helics_true if the publication is a valid publication.

	
void helicsPublicationPublishBoolean(helics_publication pub, helics_bool val, helics_error *err)

	Publish a Boolean Value.

	Parameters

	
	pub – The publication to publish for.

	val – The boolean value to publish. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsPublicationPublishChar(helics_publication pub, char val, helics_error *err)

	Publish a single character.

	Parameters

	
	pub – The publication to publish for.

	val – The numerical value to publish. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsPublicationPublishComplex(helics_publication pub, double real, double imag, helics_error *err)

	Publish a complex value (or pair of values).

	Parameters

	
	pub – The publication to publish for.

	real – The real part of a complex number to publish.

	imag – The imaginary part of a complex number to publish. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsPublicationPublishDouble(helics_publication pub, double val, helics_error *err)

	Publish a double floating point value.

	Parameters

	
	pub – The publication to publish for.

	val – The numerical value to publish. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsPublicationPublishInteger(helics_publication pub, int64_t val, helics_error *err)

	Publish an integer value.

	Parameters

	
	pub – The publication to publish for.

	val – The numerical value to publish. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsPublicationPublishNamedPoint(helics_publication pub, const char *str, double val, helics_error *err)

	Publish a named point.

	Parameters

	
	pub – The publication to publish for.

	str – A string for the name to publish.

	val – A double for the value to publish. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsPublicationPublishRaw(helics_publication pub, const void *data, int inputDataLength, helics_error *err)

	Publish raw data from a char * and length.

	Parameters

	
	pub – The publication to publish for.

	data – A pointer to the raw data.

	inputDataLength – The size in bytes of the data to publish. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsPublicationPublishString(helics_publication pub, const char *str, helics_error *err)

	Publish a string.

	Parameters

	
	pub – The publication to publish for.

	str – The string to publish. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsPublicationPublishTime(helics_publication pub, helics_time val, helics_error *err)

	Publish a time value.

	Parameters

	
	pub – The publication to publish for.

	val – The numerical value to publish. @forcpponly

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsPublicationPublishVector(helics_publication pub, const double *vectorInput, int vectorLength, helics_error *err)

	Publish a vector of doubles.

	Parameters

	
	pub – The publication to publish for.

	vectorInput – A pointer to an array of double data. @forcpponly

	vectorLength – The number of points to publish.

	err – [inout] A pointer to an error object for catching errors. @endforcpponly

	
void helicsPublicationSetInfo(helics_publication pub, const char *info, helics_error *err)

	Set the data in the info field for a publication.

	Parameters

	
	pub – The publication to set the info field for.

	info – The string to set. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	
void helicsPublicationSetMinimumChange(helics_publication pub, double tolerance, helics_error *err)

	Set the minimum change detection tolerance.

	Parameters

	
	pub – The publication to modify.

	tolerance – The tolerance level for publication, values changing less than this value will not be published. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

	
void helicsPublicationSetOption(helics_publication pub, int option, int val, helics_error *err)

	Set the value of an option for a publication

	Parameters

	
	pub – The publication to query.

	option – Integer code for the option to set /ref helics_handle_options.

	val – The value to set the option to. @forcpponly

	err – [inout] An error object to fill out in case of an error. @endforcpponly

Query

	
const char *helicsQueryBrokerExecute(helics_query query, helics_broker broker, helics_error *err)

	Execute a query directly on a broker.

The call will block until the query finishes which may require communication or other delays.

	Parameters

	
	query – The query object to use in the query.

	broker – The broker to send the query to. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	A pointer to a string. The string will remain valid until the query is freed or executed again. @forcpponly The return will be nullptr if broker or query is an invalid object, the return string will be “#invalid” if the query itself was invalid @endforcpponly

	
const char *helicsQueryCoreExecute(helics_query query, helics_core core, helics_error *err)

	Execute a query directly on a core.

The call will block until the query finishes which may require communication or other delays.

	Parameters

	
	query – The query object to use in the query.

	core – The core to send the query to. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	A pointer to a string. The string will remain valid until the query is freed or executed again. @forcpponly The return will be nullptr if core or query is an invalid object, the return string will be “#invalid” if the query itself was invalid. @endforcpponly

	
const char *helicsQueryExecute(helics_query query, helics_federate fed, helics_error *err)

	Execute a query.

The call will block until the query finishes which may require communication or other delays.

	Parameters

	
	query – The query object to use in the query.

	fed – A federate to send the query through. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	A pointer to a string. The string will remain valid until the query is freed or executed again. @forcpponly The return will be nullptr if fed or query is an invalid object, the return string will be “#invalid” if the query itself was invalid. @endforcpponly

	
void helicsQueryExecuteAsync(helics_query query, helics_federate fed, helics_error *err)

	Execute a query in a non-blocking call.

	Parameters

	
	query – The query object to use in the query.

	fed – A federate to send the query through. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
const char *helicsQueryExecuteComplete(helics_query query, helics_error *err)

	Complete the return from a query called with /ref helicsExecuteQueryAsync.

The function will block until the query completes /ref isQueryComplete can be called to determine if a query has completed or not.

	Parameters

	
	query – The query object to complete execution of. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	A pointer to a string. The string will remain valid until the query is freed or executed again. @forcpponly The return will be nullptr if query is an invalid object @endforcpponly

	
void helicsQueryFree(helics_query query)

	Free the memory associated with a query object.

	
helics_bool helicsQueryIsCompleted(helics_query query)

	Check if an asynchronously executed query has completed.

This function should usually be called after a QueryExecuteAsync function has been called.

	Parameters

	query – The query object to check if completed.

	Returns

	Will return helics_true if an asynchronous query has completed or a regular query call was made with a result, and false if an asynchronous query has not completed or is invalid

Warning

doxygenfunction: Cannot find function “helicsQueryExecuteCompleted” in doxygen xml output for project “helics” from directory: /home/docs/checkouts/readthedocs.org/user_builds/helics/checkouts/helics2/build-doxygen/docs/xml

	
void helicsQuerySetTarget(helics_query query, const char *target, helics_error *err)

	Update the target of a query.

@forcpponly

	Parameters

	
	query – The query object to change the target of.

	target – the name of the target to query

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	
void helicsQuerySetQueryString(helics_query query, const char *queryString, helics_error *err)

	Update the queryString of a query.

	Parameters

	
	query – The query object to change the target of.

	queryString – the new queryString @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

Others

	
void helicsCleanupLibrary(void)

	Function to do some housekeeping work.

This runs some cleanup routines and tries to close out any residual thread that haven’t been shutdown yet.

	
void helicsCloseLibrary(void)

	Call when done using the helics library. This function will ensure the threads are closed properly. If possible this should be the last call before exiting.

	
helics_broker helicsCreateBroker(const char *type, const char *name, const char *initString, helics_error *err)

	Create a broker object.

	Parameters

	
	type – The type of the broker to create.

	name – The name of the broker. It can be a nullptr or empty string to have a name automatically assigned.

	initString – An initialization string to send to the core-the format is similar to command line arguments. Typical options include a broker address such as broker=”XSSAF” if this is a subbroker, or the number of federates, or the address. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	A helics_broker object. @forcpponly It will be NULL if there was an error indicated in the err object. @endforcpponly

	
helics_broker helicsCreateBrokerFromArgs(const char *type, const char *name, int argc, const char *const *argv, helics_error *err)

	Create a core object by passing command line arguments.

	Parameters

	
	type – The type of the core to create.

	name – The name of the core. It can be a nullptr or empty string to have a name automatically assigned. @forcpponly

	argc – The number of arguments. @endforcpponly

	argv – The list of string values from a command line. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	A helics_core object.

	
helics_federate helicsCreateCombinationFederate(const char *fedName, helics_federate_info fi, helics_error *err)

	Create a combination federate from a federate info object.

Combination federates are both value federates and message federates, objects can be used in all functions that take a helics_federate, helics_message_federate or helics_federate object as an argument

	Parameters

	
	fedName – A string with the name of the federate, can be NULL or an empty string to pull the default name from fi.

	fi – The federate info object that contains details on the federate. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	An opaque value federate object nullptr if the object creation failed.

	
helics_federate helicsCreateCombinationFederateFromConfig(const char *configFile, helics_error *err)

	Create a combination federate from a JSON file or JSON string or TOML file.

Combination federates are both value federates and message federates, objects can be used in all functions that take a helics_federate, helics_message_federate or helics_federate object as an argument

	Parameters

	
	configFile – A JSON file or a JSON string or TOML file that contains setup and configuration information. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	An opaque combination federate object.

	
helics_core helicsCreateCore(const char *type, const char *name, const char *initString, helics_error *err)

	Create a core object.

	Parameters

	
	type – The type of the core to create.

	name – The name of the core. It can be a nullptr or empty string to have a name automatically assigned.

	initString – An initialization string to send to the core. The format is similar to command line arguments. Typical options include a broker name, the broker address, the number of federates, etc. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	A helics_core object. @forcpponly If the core is invalid, err will contain the corresponding error message and the returned object will be NULL. @endforcpponly

	
helics_core helicsCreateCoreFromArgs(const char *type, const char *name, int argc, const char *const *argv, helics_error *err)

	Create a core object by passing command line arguments.

	Parameters

	
	type – The type of the core to create.

	name – The name of the core. It can be a nullptr or empty string to have a name automatically assigned. @forcpponly

	argc – The number of arguments. @endforcpponly

	argv – The list of string values from a command line. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	A helics_core object.

	
helics_federate_info helicsCreateFederateInfo(void)

	Create a federate info object for specifying federate information when constructing a federate.

	Returns

	A helics_federate_info object which is a reference to the created object.

	
helics_federate helicsCreateMessageFederate(const char *fedName, helics_federate_info fi, helics_error *err)

	Create a message federate from a federate info object.

helics_message_federate objects can be used in all functions that take a helics_message_federate or helics_federate object as an argument.

	Parameters

	
	fedName – The name of the federate to create.

	fi – The federate info object that contains details on the federate. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	An opaque message federate object.

	
helics_federate helicsCreateMessageFederateFromConfig(const char *configFile, helics_error *err)

	Create a message federate from a JSON file or JSON string or TOML file.

helics_message_federate objects can be used in all functions that take a helics_message_federate or helics_federate object as an argument.

	Parameters

	
	configFile – A Config(JSON,TOML) file or a JSON string that contains setup and configuration information. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	An opaque message federate object.

	
helics_query helicsCreateQuery(const char *target, const char *query)

	Create a query object.

A query object consists of a target and query string.

	Parameters

	
	target – The name of the target to query.

	query – The query to make of the target.

	
helics_federate helicsCreateValueFederate(const char *fedName, helics_federate_info fi, helics_error *err)

	Create a value federate from a federate info object.

helics_federate objects can be used in all functions that take a helics_federate or helics_federate object as an argument.

	Parameters

	
	fedName – The name of the federate to create, can NULL or an empty string to use the default name from fi or an assigned name.

	fi – The federate info object that contains details on the federate. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	An opaque value federate object.

	
helics_federate helicsCreateValueFederateFromConfig(const char *configFile, helics_error *err)

	Create a value federate from a JSON file, JSON string, or TOML file.

helics_federate objects can be used in all functions that take a helics_federate or helics_federate object as an argument.

	Parameters

	
	configFile – A JSON file or a JSON string or TOML file that contains setup and configuration information. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	An opaque value federate object.

	
const char *helicsGetBuildFlags(void)

	Get the build flags used to compile HELICS.

	
const char *helicsGetCompilerVersion(void)

	Get the compiler version used to compile HELICS.

	
helics_federate helicsGetFederateByName(const char *fedName, helics_error *err)

	Get an existing federate object from a core by name.

The federate must have been created by one of the other functions and at least one of the objects referencing the created federate must still be active in the process.

	Parameters

	
	fedName – The name of the federate to retrieve. @forcpponly

	err – [inout] An error object that will contain an error code and string if any error occurred during the execution of the function. @endforcpponly

	Returns

	NULL if no fed is available by that name otherwise a helics_federate with that name.

	
int helicsGetOptionIndex(const char *val)

	Get an option index for use in /ref helicsPublicationSetOption, /ref helicsInputSetOption, /ref helicsEndpointSetOption, /ref helicsFilterSetOption, and the corresponding get functions.

	Parameters

	val – A string with the option name.

	Returns

	An int with the option index or (-1) if not a valid property.

	
int helicsGetPropertyIndex(const char *val)

	Get a property index for use in /ref helicsFederateInfoSetFlagOption, /ref helicsFederateInfoSetTimeProperty, or /ref helicsFederateInfoSetIntegerProperty

	Parameters

	val – A string with the property name.

	Returns

	An int with the property code or (-1) if not a valid property.

	
const char *helicsGetVersion(void)

	Get a version string for HELICS.

	
helics_bool helicsIsCoreTypeAvailable(const char *type)

	Returns true if core/broker type specified is available in current compilation.

Options include “zmq”, “udp”, “ipc”, “interprocess”, “tcp”, “default”, “mpi”.

	Parameters

	type – A string representing a core type.

	
const char *helicsSubscriptionGetKey(helics_input ipt)

	Get the key of a subscription.

	Returns

	A const char with the subscription key.

	
helics_error helicsErrorInitialize(void)

	Return an initialized error object.

	
void helicsErrorClear(helics_error *err)

	Clear an error object.

clear an error object

 C++ API Reference (Doxygen)

C++ API Reference (Doxygen)

The latest Doxygen generated docs for the HELICS 2 C++ API can be found at https://docs.helics.org/en/helics2/doxygen/index.html

 Developer Guide

Developer Guide

	Style Guide

	Generating SWIG extension

	Run tests

	Generating Documentation

	HELICS Benchmarks

	Description of the different continuous integration test setups running on the CI servers

	Public API

 Style Guide

Style Guide

The goal of the style guide is to describe in detail naming conventions for
developing HELICS. Style conventions are encapsulated in the .clang_format
files in the project.

We have an EditorConfig file that has basic formatting rules code editors and
IDEs can use. See https://editorconfig.org/ [https://editorconfig.org/#download]
for how to setup support in your preferred editor or IDE.

Naming Conventions

	All functions should be camelCase

publication_id_t registerGlobalPublication (const std::string &name, const std::string &type, const std::string &units = "");

	All classes should be PascalCase except those noted below(namely classes which are wrappers for fundamental types)

class ValueFederate : public virtual Federate
{
public:
 ValueFederate (const FederateInfo &fi);
}

	class methods should be camelCase

Publication ®isterGlobalPublication (const std::string &name, const std::string &type, const std::string &units = "");

Exceptions: functions that match standard library functions e.g. to_string()

	All fundamental types and enumerations should be underscore
separated words in lower case. Fundamental types are those for which
normal usage does not involve calling any methods or are simple
aliases for other fundamental types

/* Type definitions */
typedef enum {
 helics_ok,
 helics_discard,
 helics_warning,
 helics_error,
} helics_status;

typedef void *helics_subscription;
typedef void *helics_publication;
typedef void *helics_endpoint;
typedef void *helics_source_filter;
typedef void *helics_destination_filter;
typedef void *helics_core;
typedef void *helics_broker;

typedef int helics_bool_t;

	All C++ functions and types should be contained in the helics
namespace with subnamespaces used as appropriate

namespace helics
{
 ...
} // namespace helics

	C interface functions should begin with helicsXXXX

helics_bool helicsBrokerIsConnected (helics_broker broker);

	C interface function should be of the format helics{Class}{Action}
or helics{Action} if no class is appropriate

helics_bool helicsBrokerIsConnected (helics_broker broker);

const char *helicsGetVersion ();

	All cmake commands (those defined in cmake itself) should be lower case

if as opposed to IF
install vs INSTALL

	Public interface functions should be documented consistent with Doxygen style comments
non public ones should be documented as well with doxygen but we are a ways from that goal

/** get an identifier for the core
 @param core the core to query
 @return a string with the identifier of the core
*/
HELICS_EXPORT const char *helicsCoreGetIdentifier (helics_core core);

 Generating SWIG extension

Generating SWIG extension

Python

The easiest way to generate the latest C files for the Python extension is to use CMake itself.
For example, you can run the following in a POSIX/Unix environment where you have swig installed with Python 3.6.

git clone https://github.com/GMLC-TDC/HELICS
cd HELICS
mkdir build
cmake -DBUILD_PYTHON_INTERFACE=ON -DPYTHON_INCLUDE_DIR=$(python3-config --prefix)/include/python3.6m/ -DCMAKE_INSTALL_PREFIX=$HOME/local/helics-develop/ .. && make -j 8 && make install
cd swig/python
cp helicsPYTHON_wrap.c ../../../swig/python/helics_wrap.c
cp helics.py ../../../swig/python/helics.py

This method verifies that the C file generated from CMake using SWIG compiles correctly into a Python extension.

For building a Python 2 compatible interface, use BUILD_PYTHON2_INTERFACE instead of BUILD_PYTHON_INTERFACE.

MATLAB

For the MATLAB extension, you need a special version of SWIG. Get it here [https://github.com/jaeandersson/swig].

git clone https://github.com/jaeandersson/swig
cd swig
./configure --prefix=/Users/$(whoami)/local/swig-matlab/ && make -j8 && make install

The matlab interface can be built using BUILD_MATLAB_INTERFACE in the cmake build of HELICS. This will use a MATLAB installation to build the interface. See installation

Octave

Octave [https://www.gnu.org/software/octave/] is a free program that works similarly to MATLAB
Building the octave interface requires swig, and currently will work with Octave 4.0 through 4.2. 4.4 is not currently supported by SWIG unless you build from the current master of the swig repo and use that version. The next release of swig will likely support it. It does work on windows, though the actual generation is not fully operational for unknown reasons and will be investigated at some point. A mkhelicsOCTFile.m is generated in the build directory this needs to be executed in octave, then a helics.oct file should be generated, the libHelicsShared.dll needs to be copied along with the libzmq.dll files Once this is done the library can be loaded by calling helics. On linux this build step is done for you with BUILD_OCTAVE_INTERFACE.

C#
A C# interface can be generated using swig and enabling BUILD_CSHARP_INTERFACE in the CMake. The support is partial; it builds and can be run but not all the functions are completely usable and it hasn’t been fully tested.

Java
A JAVA interface can be generated using swig and enabling BUILD_JAVA_INTERFACE in the CMake. This interface is tested regularly as part of the CI test system.

 Run tests

Run tests

Python

To run the python tests, first install pytest

pip install pytest

Then run it by doing the following

cd ~/GitRepos/HELICS/tests/
pytest -sv python_helics

 Generating Documentation

Generating Documentation

The documentation requires Pandoc to convert from Markdown to RST.

You will need the following Python packages.

pip install sphinx
pip install ghp-import
pip install breathe
pip install sphinx_rtd_theme
pip install nbsphinx
pip install sphinxcontrib-pandoc-markdown

You will also need doxygen.

You can then type make doxygen html to create the documentation
locally.

If you don’t have Pandoc, you can install it using conda.

conda install pandoc

If you are unable to install pandoc, you may be able to generate some of the documentation if you install the following.

pip install recommonmark

 HELICS Benchmarks

HELICS Benchmarks

The HELICS repository has a few benchmarks that are intended to test various aspects of the code and record performance over time

Baseline benchmarks

These benchmarks run on a single machine using Google Benchmarks and are intended to test various aspects of HELICS over a range of spaces applicable to a single machine.

ActionMessage

Micro-benchmarks to test some operations concerning the serialization of the underlying message structure in HELICS

Conversion

Micro-benchmarks to test the serialization and deserialization of common data types in HELICS

Simulation Benchmarks

Echo

A set of federates representing a hub and spoke model of communication for value based interfaces

Echo_c

A set of federates representing a hub and spoke model of communication for value based interfaces using the C shared library.

Echo Message

A set of federates representing a hub and spoke model of communication for message based interfaces

Filter

A variant of the Echo message test that add filters to the messages

Ring Benchmark

A ring like structure that passes a value token around a bunch of times

Ring Message Benchmark

A ring like structure that passes a message token around a bunch of times.

Timing Benchmark

Similar to echo but doesn’t actually send any data just pure test of the timing messages

Message Benchmarks

Benchmarks testing various aspects of the messaging structure in HELICS

MessageLookup

Benchmarks sends messages to random federates, varying the total number of interfaces and federates.

MessageSend

Sending messages between 2 federates varying the message size and count per timing loop.

Standardized Tests

PHold

A standard PHOLD benchmark varying the number of federates.

Multinode Benchmarks

Some of the benchmarks above have multinode variants. These benchmarks will have a standalone binary for the federate used in the benchmark that can be run on each node. Any multinode benchmark run will require some setup to make it launch in your particular environment and knowing the basics for the job scheduler on your cluster will be very helpful.

Any sbatch files for multinode benchmark runs in the repository are setup for running in the pdebug queue on LC’s Quartz cluster. They are unlikely to work as is on other clusters, however they should work as a starting point for other clusters using slurm. The minimum changes required are likely to involve setting the queue/partition correctly and ensuring the right bank/account for charging CPU time is used.

 Description of the different continuous integration test setups running on the CI servers

Description of the different continuous integration test setups running on the CI servers

There are 5 CI servers that are running along with a couple additional checks
Travis, Appveyor, Circle-CI, Azure and Drone.

Travis-CI Tests

Travis-ci runs many of the primary checks In 3 different stages

Push Tests

Push tests run on all pushes to any branch in the main repository, there are 4 tests that run regularly

	GCC 6: Test the GCC 6.0 compiler and the CI labeled Tests BOOST 1.61, SWIG, MPI

	Clang 5: Test the clang compiler and run the CI labeled Tests, along with python and Java interface generation and Tests Using C++17

	GCC 4.9: Test the oldest supported compiler in GCC, Test the included interface files(SWIG OFF) for Java and python, and test a packaging build. The main tests are disabled, BOOST 1.61

	XCode 10.2: Test a recent XCode compiler with the Shared API library tests

PR tests and develop branch Tests

Pull request tests run on every pull request to develop or main. In addition to the previous 4 tests 2 additional tests are run.

	Clang 3.6: which is the oldest fully supported clang compiler, with boost 1.58 (Build only)

	XCode 10.2

Daily Builds on develop

On the develop branch a few additional tests are run on a daily basis. These will run an extended set of tests or things like valgrind or clang-sanitizers. The previous tests are run with an extended set of tests and a few additional tests are run

	gcc 6.0 valgrind, interface disabled

	gcc 6.0 Code Coverage, MPI, interfaces disabled

	gcc 6.0 ZMQ subproject cmake 3.11

	Mingw test building on the Mingw platform

	Xcode 9.4 which is the oldest fully supported Xcode version (not for PRs to develop)

Appveyor tests

	MSVC 2015 CMake 3.13, python and JAVA builds

Azure tests

PRs and commits to the main and develop branches that pass the tests on Travis will trigger builds on Azure for several other HELICS related repositories (such as HELICS-Examples). The result of the builds for those repositories will be reported as a comment on the PR (if any) that triggered the build.

On the Primary HELICS repository there are 4 Azure builds:

	MSVC2015 64bit Build and test, chocolatey swig/boost

	MSVC2017 32bit Build and test

	MSVC2017 64bit Build and test with Java

	MSVC2019 64bit Build and test with Java

Circle CI

All PR’s and branches trigger a set of builds using Docker images on Circle-CI.

	Octave tests - tests the Octave interface and runs some tests

	Clang-MSAN - runs the clang memory sanitizer

	Clang-ASAN - runs the clang address sanitizer and undefined behavior sanitizer

	Clang-TSAN - runs the clang thread sanitizer

	install1 - build and install and link with the C shared library, C++ shared library, C++98 library and C++ apps library, and run some tests linking to the installed libraries

	install2 - build and install and link with the C shared library, and C++98 library only and run some tests linking with the installed library

Benchmark tests

Circle ci also runs a benchmark test that runs every couple days. Eventually this will form the basis of benchmark regression test.

Drone

	64 bit and 32 bit builds on ARM processors

Cirrus CI

	FreeBSD 12.1 build

Read the docs

	Build the docs for the website and test on every commit

Codacy

There are some static analysis checks run with Codacy. While it is watched it is not always required to pass.

 Public API

Public API

This file defines what is included in what is considered the stable user API for HELICS.

This API will be backwards code compatible through major version numbers, though functions may be marked deprecated between minor version numbers. Functions in any other header will not be considered in versioning decisions. If other headers become commonly used we will take that into consideration at a later time. Anything marked private is subject to change and most things marked protected can change as well though somewhat more consideration will be given in versioning.

The public API includes the following

	Application API headers

	CombinationFederate.hpp

	Publications.hpp

	Subscriptions.hpp

	Endpoints.hpp

	Filters.hpp

	Federate.hpp

	helicsTypes.hpp

	data_view.hpp

	MessageFederate.hpp

	MessageOperators.hpp

	ValueConverter.hpp

	ValueFederate.hpp

	HelicsPrimaryTypes.hpp

	queryFunctions.hpp

	FederateInfo.hpp

	Inputs.hpp

	BrokerApp.hpp (New in 2.3 Moved from App library)

	CoreApp.hpp (New in 2.3)- Operations and some capabilities may be added or tweaked in the next revision

	timeOperations.hpp (New in 2.3)- previously functions were in helics-time.hpp

	typeOperations.hpp (New in 2.3)- previously functions were in core-types.hpp

	Exceptions: Any function or method dealing with Inputs with data from multiple sources is subject to change, the vector subscriptions, and vector inputs are subject to change. The functionality related to PublishJSON is considered experimental and may change in the future. The queries to retrieve JSON may update the format of the returned JSON in the future. A general note on queries. The data returned via queries is subject to change, in general queries will not be removed, but if a need arises the data structure may change at minor revision numbers.

	Core library headers

	Core.hpp

	Broker.hpp

	CoreFactory.hpp (Header is deprecated for public API in 2.3 use CoreApp instead)

	BrokerFactory.hpp (Header is deprecated for public API in 2.3 use BrokerApp instead)

	core-exceptions.hpp

	core-types.hpp (string operation functions moved to typeOperations.hpp in 2.3, though are still available for compatibility reasons in the Public API)

	core-data.hpp

	helics-time.hpp (string operation functions moved to timeOperations.hpp in 2.3, though are still available for compatibility reasons in the Public API)

	CoreFederateInfo.hpp

	helicsVersion.hpp

	federate_id.hpp

	helics_definitions.hpp

	NOTE: core headers in the public API are headers that need to be available for the Application API public headers. The core api can be used more directly with static linking but applications are generally recommended to use the application API or other higher level API’s

	C Shared Library headers (c)

	api-data.h

	helics.h

	helicsCallbacks.h (Not well used and considered experimental yet)

	MessageFederate.h

	MessageFilters.h

	ValueFederate.h

	App Library

	Player.hpp

	Recorder.hpp

	Echo.hpp

	Source.hpp

	Tracer.hpp

	Clone.hpp (new in 2.2)

	helicsApp.hpp

	BrokerApp.hpp (aliased to application_api version)

	CoreApp.hpp (aliased to application_api version)

	BrokerServer.hpp (removed in 2.3 as not useful for library operations, though still available in the static library)

	Exceptions: Any function dealing with Inputs concerning data from multiple sources is subject to change, the vector subscription Objects, and vector Input objects are subject to change. Also some changes may occur in regard to units on the Application API.

	C++98 Library All headers are mostly stable. Though we reserve the ability to make changes to make them better match the main C++ API.

In the installed folder are some additional headers from third party libraries (cereal, C++ compatibility headers, CLI11, utilities), we will try to make sure these are compatible in the features used in the HELICS API, though changes in other aspects of those libraries will not be considered in HELICS versioning, this caveat includes anything in the helics/external and helics/utilities directories. Only changes which impact the signatures defined above will factor into versioning decisions. You are free to use them but they are not guaranteed to be backwards compatible on version changes.

 RoadMap

RoadMap

This document contains tentative plans for changes and improvements of note in upcoming versions of the HELICS library. All dates are approximate and subject to change, but this is a snapshot of the current planning thoughts. See the projects [https://github.com/GMLC-TDC/HELICS/projects] for additional details

[2.8] ~ 2021-06-15

This will be the last of the 2.X series releases, there will likely be at least one patch release after this before fully moving to 3.0

	Internal text based (probably JSON) message format option for general backwards compatibility

	Function deprecations to prepare people to move to 3.0

[3.0] ~ 2021-05-05 Beta, Final release approximately a month later

Upgrade minimum compilers and build systems. Currently planned minimum targets are gcc 7.0, clang 5.0, MSVC 2017 15.7, XCode 10.1, and CMake 3.10. This is a setup which should be supported on Ubuntu 18.04 repositories. Minimum Boost version will also be updated though Boost is becoming less critical for the HELICS core so may not be that important. The likely minimum tested target will likely be 1.65.1 though the core might work with older versions and its use can be disabled completely. Certain features may require a newer boost version(1.70) than what would be available on Ubuntu 18.04. General target requirements will allow HELICS to build on the most recent 2 LTS versions of Ubuntu using readily available repo packages. Minimum required compilers for building on macOS and systems using ICC will include Xcode 10 and ICC 19. The minimum ZMQ version will also be bumped up to 4.2. General policy for Mac builds will be supporting Xcode compilers on versions of MacOS that receive security upgrades which is generally the last 3 versions, though 10.1+ and 11 will likely be the only 2 supported at HELICS 3.0 release, and support minor releases for at least 2 years. MSVC compilers will be supported for at least 2 years from release date, an appropriate CMake (meaning slightly newer than the compiler) will also be required for Visual Studio builds.

	Control interface

	Targeted endpoints

	General API changes based on feedback and code review

	Remove deprecated functions

	Change values for log level enumerations

	Some additional renaming of CMake variables

	Renaming of some of the libraries and reorganization of the header locations

[3.1] ~ 2021-07-15

Mostly things that didn’t quite make it into the 3.0 release and a number of bug fixes that come from transitioning to HELICS 3.0.

	SSL capable core (unlikely in 3.1 but someday)

	Full Dynamic Federation support

	Single thread cores (partial at release)

	Plugin architecture for user defined cores

	xSDK compatibility

	Much more general debugging support

 Index

Index

 H

H

 	
 	helics_core_type_default (C++ enumerator)

 	helics_core_type_http (C++ enumerator)

 	helics_core_type_inproc (C++ enumerator)

 	helics_core_type_interprocess (C++ enumerator)

 	helics_core_type_ipc (C++ enumerator)

 	helics_core_type_mpi (C++ enumerator)

 	helics_core_type_nng (C++ enumerator)

 	helics_core_type_null (C++ enumerator)

 	helics_core_type_tcp (C++ enumerator)

 	helics_core_type_tcp_ss (C++ enumerator)

 	helics_core_type_test (C++ enumerator)

 	helics_core_type_udp (C++ enumerator)

 	helics_core_type_websocket (C++ enumerator)

 	helics_core_type_zmq (C++ enumerator)

 	helics_core_type_zmq_test (C++ enumerator)

 	helics_data_type_any (C++ enumerator)

 	helics_data_type_boolean (C++ enumerator)

 	helics_data_type_complex (C++ enumerator)

 	helics_data_type_complex_vector (C++ enumerator)

 	helics_data_type_double (C++ enumerator)

 	helics_data_type_int (C++ enumerator)

 	helics_data_type_named_point (C++ enumerator)

 	helics_data_type_raw (C++ enumerator)

 	helics_data_type_string (C++ enumerator)

 	helics_data_type_time (C++ enumerator)

 	helics_data_type_vector (C++ enumerator)

 	helics_error_connection_failure (C++ enumerator)

 	helics_error_discard (C++ enumerator)

 	helics_error_execution_failure (C++ enumerator)

 	helics_error_external_type (C++ enumerator)

 	helics_error_fatal (C++ enumerator)

 	helics_error_insufficient_space (C++ enumerator)

 	helics_error_invalid_argument (C++ enumerator)

 	helics_error_invalid_function_call (C++ enumerator)

 	helics_error_invalid_object (C++ enumerator)

 	helics_error_invalid_state_transition (C++ enumerator)

 	helics_error_other (C++ enumerator)

 	helics_error_registration_failure (C++ enumerator)

 	helics_error_system_failure (C++ enumerator)

 	helics_filter_type_clone (C++ enumerator)

 	helics_filter_type_custom (C++ enumerator)

 	helics_filter_type_delay (C++ enumerator)

 	helics_filter_type_firewall (C++ enumerator)

 	helics_filter_type_random_delay (C++ enumerator)

 	helics_filter_type_random_drop (C++ enumerator)

 	helics_filter_type_reroute (C++ enumerator)

 	helics_flag_delay_init_entry (C++ enumerator)

 	helics_flag_enable_init_entry (C++ enumerator)

 	helics_flag_forward_compute (C++ enumerator)

 	helics_flag_ignore_time_mismatch_warnings (C++ enumerator)

 	helics_flag_interruptible (C++ enumerator)

 	helics_flag_observer (C++ enumerator)

 	helics_flag_only_transmit_on_change (C++ enumerator)

 	helics_flag_only_update_on_change (C++ enumerator)

 	helics_flag_realtime (C++ enumerator)

 	helics_flag_restrictive_time_policy (C++ enumerator)

 	helics_flag_rollback (C++ enumerator)

 	helics_flag_single_thread_federate (C++ enumerator)

 	helics_flag_slow_responding (C++ enumerator)

 	helics_flag_source_only (C++ enumerator)

 	helics_flag_terminate_on_error (C++ enumerator)

 	helics_flag_uninterruptible (C++ enumerator)

 	helics_flag_wait_for_current_time_update (C++ enumerator)

 	helics_handle_option_buffer_data (C++ enumerator)

 	helics_handle_option_connection_optional (C++ enumerator)

 	helics_handle_option_connection_required (C++ enumerator)

 	helics_handle_option_ignore_interrupts (C++ enumerator)

 	helics_handle_option_ignore_unit_mismatch (C++ enumerator)

 	helics_handle_option_multiple_connections_allowed (C++ enumerator)

 	helics_handle_option_only_transmit_on_change (C++ enumerator)

 	helics_handle_option_only_update_on_change (C++ enumerator)

 	helics_handle_option_single_connection_only (C++ enumerator)

 	helics_handle_option_strict_type_checking (C++ enumerator)

 	helics_iteration_request_force_iteration (C++ enumerator)

 	helics_iteration_request_iterate_if_needed (C++ enumerator)

 	helics_iteration_request_no_iteration (C++ enumerator)

 	helics_iteration_result_error (C++ enumerator)

 	helics_iteration_result_halted (C++ enumerator)

 	helics_iteration_result_iterating (C++ enumerator)

 	helics_iteration_result_next_step (C++ enumerator)

 	helics_log_level_connections (C++ enumerator)

 	helics_log_level_data (C++ enumerator)

 	helics_log_level_error (C++ enumerator)

 	helics_log_level_interfaces (C++ enumerator)

 	helics_log_level_no_print (C++ enumerator)

 	helics_log_level_summary (C++ enumerator)

 	helics_log_level_timing (C++ enumerator)

 	helics_log_level_trace (C++ enumerator)

 	helics_log_level_warning (C++ enumerator)

 	helics_ok (C++ enumerator)

 	helics_property_int_console_log_level (C++ enumerator)

 	helics_property_int_file_log_level (C++ enumerator)

 	helics_property_int_log_level (C++ enumerator)

 	helics_property_int_max_iterations (C++ enumerator)

 	helics_property_time_delta (C++ enumerator)

 	helics_property_time_input_delay (C++ enumerator)

 	helics_property_time_offset (C++ enumerator)

 	helics_property_time_output_delay (C++ enumerator)

 	helics_property_time_period (C++ enumerator)

 	helics_property_time_rt_lag (C++ enumerator)

 	helics_property_time_rt_lead (C++ enumerator)

 	helics_property_time_rt_tolerance (C++ enumerator)

 	helics_state_error (C++ enumerator)

 	helics_state_execution (C++ enumerator)

 	helics_state_finalize (C++ enumerator)

 	helics_state_initialization (C++ enumerator)

 	helics_state_pending_exec (C++ enumerator)

 	helics_state_pending_finalize (C++ enumerator)

 	helics_state_pending_init (C++ enumerator)

 	helics_state_pending_iterative_time (C++ enumerator)

 	helics_state_pending_time (C++ enumerator)

 	helics_state_startup (C++ enumerator)

 	helics_warning (C++ enumerator)

 	helicsBrokerAddDestinationFilterToEndpoint (C++ function)

 	helicsBrokerAddSourceFilterToEndpoint (C++ function)

 	helicsBrokerClone (C++ function)

 	helicsBrokerDataLink (C++ function)

 	helicsBrokerDestroy (C++ function)

 	helicsBrokerDisconnect (C++ function)

 	helicsBrokerFree (C++ function)

 	helicsBrokerGetAddress (C++ function)

 	helicsBrokerGetIdentifier (C++ function)

 	helicsBrokerIsConnected (C++ function)

 	helicsBrokerIsValid (C++ function)

 	helicsBrokerMakeConnections (C++ function)

 	helicsBrokerSetGlobal (C++ function)

 	helicsBrokerSetLogFile (C++ function)

 	helicsBrokerSetLoggingCallback (C++ function)

 	helicsBrokerWaitForDisconnect (C++ function)

 	helicsCleanupLibrary (C++ function)

 	helicsCloseLibrary (C++ function)

 	helicsCoreAddDestinationFilterToEndpoint (C++ function)

 	helicsCoreAddSourceFilterToEndpoint (C++ function)

 	helicsCoreClone (C++ function)

 	helicsCoreConnect (C++ function)

 	helicsCoreDataLink (C++ function)

 	helicsCoreDestroy (C++ function)

 	helicsCoreDisconnect (C++ function)

 	helicsCoreFree (C++ function)

 	helicsCoreGetAddress (C++ function)

 	helicsCoreGetIdentifier (C++ function)

 	helicsCoreIsConnected (C++ function)

 	helicsCoreIsValid (C++ function)

 	helicsCoreMakeConnections (C++ function)

 	helicsCoreRegisterCloningFilter (C++ function)

 	helicsCoreRegisterFilter (C++ function)

 	helicsCoreSetGlobal (C++ function)

 	helicsCoreSetLogFile (C++ function)

 	helicsCoreSetLoggingCallback (C++ function)

 	helicsCoreSetReadyToInit (C++ function)

 	helicsCoreWaitForDisconnect (C++ function)

 	helicsCreateBroker (C++ function)

 	helicsCreateBrokerFromArgs (C++ function)

 	helicsCreateCombinationFederate (C++ function)

 	helicsCreateCombinationFederateFromConfig (C++ function)

 	helicsCreateCore (C++ function)

 	helicsCreateCoreFromArgs (C++ function)

 	helicsCreateFederateInfo (C++ function)

 	helicsCreateMessageFederate (C++ function)

 	helicsCreateMessageFederateFromConfig (C++ function)

 	helicsCreateQuery (C++ function)

 	helicsCreateValueFederate (C++ function)

 	helicsCreateValueFederateFromConfig (C++ function)

 	helicsEndpointCreateMessageObject (C++ function)

 	helicsEndpointGetDefaultDestination (C++ function)

 	helicsEndpointGetInfo (C++ function)

 	helicsEndpointGetMessageObject (C++ function)

 	helicsEndpointGetName (C++ function)

 	helicsEndpointGetOption (C++ function)

 	helicsEndpointGetType (C++ function)

 	helicsEndpointHasMessage (C++ function)

 	helicsEndpointIsValid (C++ function)

 	helicsEndpointSendEventRaw (C++ function)

 	helicsEndpointSendMessageObject (C++ function)

 	helicsEndpointSendMessageObjectZeroCopy (C++ function)

 	helicsEndpointSendMessageRaw (C++ function)

 	helicsEndpointSetDefaultDestination (C++ function)

 	helicsEndpointSetInfo (C++ function)

 	helicsEndpointSetOption (C++ function)

 	helicsEndpointSubscribe (C++ function)

 	helicsErrorClear (C++ function)

 	helicsErrorInitialize (C++ function)

 	helicsFederateAddDependency (C++ function)

 	helicsFederateClearMessages (C++ function)

 	helicsFederateClearUpdates (C++ function)

 	helicsFederateClone (C++ function)

 	helicsFederateCreateMessageObject (C++ function)

 	helicsFederateDestroy (C++ function)

 	helicsFederateEnterExecutingMode (C++ function)

 	helicsFederateEnterExecutingModeAsync (C++ function)

 	helicsFederateEnterExecutingModeComplete (C++ function)

 	helicsFederateEnterExecutingModeIterative (C++ function)

 	helicsFederateEnterExecutingModeIterativeAsync (C++ function)

 	helicsFederateEnterExecutingModeIterativeComplete (C++ function)

 	helicsFederateEnterInitializingMode (C++ function)

 	helicsFederateEnterInitializingModeAsync (C++ function)

 	helicsFederateEnterInitializingModeComplete (C++ function)

 	helicsFederateFinalize (C++ function)

 	helicsFederateFinalizeAsync (C++ function)

 	helicsFederateFinalizeComplete (C++ function)

 	
 	helicsFederateFree (C++ function)

 	helicsFederateGetCoreObject (C++ function)

 	helicsFederateGetCurrentTime (C++ function)

 	helicsFederateGetEndpoint (C++ function)

 	helicsFederateGetEndpointByIndex (C++ function)

 	helicsFederateGetEndpointCount (C++ function)

 	helicsFederateGetFilter (C++ function)

 	helicsFederateGetFilterByIndex (C++ function)

 	helicsFederateGetFilterCount (C++ function)

 	helicsFederateGetFlagOption (C++ function)

 	helicsFederateGetInput (C++ function)

 	helicsFederateGetInputByIndex (C++ function)

 	helicsFederateGetInputCount (C++ function)

 	helicsFederateGetIntegerProperty (C++ function)

 	helicsFederateGetMessageObject (C++ function)

 	helicsFederateGetName (C++ function)

 	helicsFederateGetPublication (C++ function)

 	helicsFederateGetPublicationByIndex (C++ function)

 	helicsFederateGetPublicationCount (C++ function)

 	helicsFederateGetState (C++ function)

 	helicsFederateGetSubscription (C++ function)

 	helicsFederateGetTimeProperty (C++ function)

 	helicsFederateGlobalError (C++ function)

 	helicsFederateHasMessage (C++ function)

 	helicsFederateInfoClone (C++ function)

 	helicsFederateInfoFree (C++ function)

 	helicsFederateInfoLoadFromArgs (C++ function)

 	helicsFederateInfoSetBroker (C++ function)

 	helicsFederateInfoSetBrokerInitString (C++ function)

 	helicsFederateInfoSetBrokerKey (C++ function)

 	helicsFederateInfoSetBrokerPort (C++ function)

 	helicsFederateInfoSetCoreInitString (C++ function)

 	helicsFederateInfoSetCoreName (C++ function)

 	helicsFederateInfoSetCoreType (C++ function)

 	helicsFederateInfoSetCoreTypeFromString (C++ function)

 	helicsFederateInfoSetFlagOption (C++ function)

 	helicsFederateInfoSetIntegerProperty (C++ function)

 	helicsFederateInfoSetLocalPort (C++ function)

 	helicsFederateInfoSetSeparator (C++ function)

 	helicsFederateInfoSetTimeProperty (C++ function)

 	helicsFederateIsAsyncOperationCompleted (C++ function)

 	helicsFederateIsValid (C++ function)

 	helicsFederateLocalError (C++ function)

 	helicsFederateLogDebugMessage (C++ function)

 	helicsFederateLogErrorMessage (C++ function)

 	helicsFederateLogInfoMessage (C++ function)

 	helicsFederateLogLevelMessage (C++ function)

 	helicsFederateLogWarningMessage (C++ function)

 	helicsFederatePublishJSON (C++ function)

 	helicsFederateRegisterCloningFilter (C++ function)

 	helicsFederateRegisterEndpoint (C++ function)

 	helicsFederateRegisterFilter (C++ function)

 	helicsFederateRegisterFromPublicationJSON (C++ function)

 	helicsFederateRegisterGlobalCloningFilter (C++ function)

 	helicsFederateRegisterGlobalEndpoint (C++ function)

 	helicsFederateRegisterGlobalFilter (C++ function)

 	helicsFederateRegisterGlobalInput (C++ function)

 	helicsFederateRegisterGlobalPublication (C++ function)

 	helicsFederateRegisterGlobalTypeInput (C++ function)

 	helicsFederateRegisterGlobalTypePublication (C++ function)

 	helicsFederateRegisterInput (C++ function)

 	helicsFederateRegisterInterfaces (C++ function)

 	helicsFederateRegisterPublication (C++ function)

 	helicsFederateRegisterSubscription (C++ function)

 	helicsFederateRegisterTypeInput (C++ function)

 	helicsFederateRegisterTypePublication (C++ function)

 	helicsFederateRequestNextStep (C++ function)

 	helicsFederateRequestTime (C++ function)

 	helicsFederateRequestTimeAdvance (C++ function)

 	helicsFederateRequestTimeAsync (C++ function)

 	helicsFederateRequestTimeComplete (C++ function)

 	helicsFederateRequestTimeIterative (C++ function)

 	helicsFederateRequestTimeIterativeAsync (C++ function)

 	helicsFederateRequestTimeIterativeComplete (C++ function)

 	helicsFederateSetFlagOption (C++ function)

 	helicsFederateSetGlobal (C++ function)

 	helicsFederateSetIntegerProperty (C++ function)

 	helicsFederateSetLogFile (C++ function)

 	helicsFederateSetLoggingCallback (C++ function)

 	helicsFederateSetSeparator (C++ function)

 	helicsFederateSetTimeProperty (C++ function)

 	helicsFilterAddDeliveryEndpoint (C++ function)

 	helicsFilterAddDestinationTarget (C++ function)

 	helicsFilterAddSourceTarget (C++ function)

 	helicsFilterGetInfo (C++ function)

 	helicsFilterGetName (C++ function)

 	helicsFilterGetOption (C++ function)

 	helicsFilterIsValid (C++ function)

 	helicsFilterRemoveDeliveryEndpoint (C++ function)

 	helicsFilterRemoveTarget (C++ function)

 	helicsFilterSet (C++ function)

 	helicsFilterSetCustomCallback (C++ function)

 	helicsFilterSetInfo (C++ function)

 	helicsFilterSetOption (C++ function)

 	helicsFilterSetString (C++ function)

 	helicsGetBuildFlags (C++ function)

 	helicsGetCompilerVersion (C++ function)

 	helicsGetFederateByName (C++ function)

 	helicsGetOptionIndex (C++ function)

 	helicsGetPropertyIndex (C++ function)

 	helicsGetVersion (C++ function)

 	helicsInputAddTarget (C++ function)

 	helicsInputClearUpdate (C++ function)

 	helicsInputGetBoolean (C++ function)

 	helicsInputGetChar (C++ function)

 	helicsInputGetComplex (C++ function)

 	helicsInputGetComplexObject (C++ function)

 	helicsInputGetDouble (C++ function)

 	helicsInputGetExtractionUnits (C++ function)

 	helicsInputGetInfo (C++ function)

 	helicsInputGetInjectionUnits (C++ function)

 	helicsInputGetInteger (C++ function)

 	helicsInputGetKey (C++ function)

 	helicsInputGetNamedPoint (C++ function)

 	helicsInputGetOption (C++ function)

 	helicsInputGetPublicationType (C++ function)

 	helicsInputGetRawValue (C++ function)

 	helicsInputGetRawValueSize (C++ function)

 	helicsInputGetString (C++ function)

 	helicsInputGetStringSize (C++ function)

 	helicsInputGetTime (C++ function)

 	helicsInputGetType (C++ function)

 	helicsInputGetUnits (C++ function)

 	helicsInputGetVector (C++ function)

 	helicsInputGetVectorSize (C++ function)

 	helicsInputIsUpdated (C++ function)

 	helicsInputIsValid (C++ function)

 	helicsInputLastUpdateTime (C++ function)

 	helicsInputSetDefaultBoolean (C++ function)

 	helicsInputSetDefaultChar (C++ function)

 	helicsInputSetDefaultComplex (C++ function)

 	helicsInputSetDefaultDouble (C++ function)

 	helicsInputSetDefaultInteger (C++ function)

 	helicsInputSetDefaultNamedPoint (C++ function)

 	helicsInputSetDefaultRaw (C++ function)

 	helicsInputSetDefaultString (C++ function)

 	helicsInputSetDefaultTime (C++ function)

 	helicsInputSetDefaultVector (C++ function)

 	helicsInputSetInfo (C++ function)

 	helicsInputSetMinimumChange (C++ function)

 	helicsInputSetOption (C++ function)

 	helicsIsCoreTypeAvailable (C++ function)

 	helicsMessageAppendData (C++ function)

 	helicsMessageCheckFlag (C++ function)

 	helicsMessageClearFlags (C++ function)

 	helicsMessageClone (C++ function)

 	helicsMessageCopy (C++ function)

 	helicsMessageFree (C++ function)

 	helicsMessageGetDestination (C++ function)

 	helicsMessageGetMessageID (C++ function)

 	helicsMessageGetOriginalDestination (C++ function)

 	helicsMessageGetOriginalSource (C++ function)

 	helicsMessageGetRawData (C++ function)

 	helicsMessageGetRawDataPointer (C++ function)

 	helicsMessageGetRawDataSize (C++ function)

 	helicsMessageGetSource (C++ function)

 	helicsMessageGetString (C++ function)

 	helicsMessageGetTime (C++ function)

 	helicsMessageIsValid (C++ function)

 	helicsMessageReserve (C++ function)

 	helicsMessageResize (C++ function)

 	helicsMessageSetData (C++ function)

 	helicsMessageSetDestination (C++ function)

 	helicsMessageSetFlagOption (C++ function)

 	helicsMessageSetMessageID (C++ function)

 	helicsMessageSetOriginalDestination (C++ function)

 	helicsMessageSetOriginalSource (C++ function)

 	helicsMessageSetSource (C++ function)

 	helicsMessageSetString (C++ function)

 	helicsMessageSetTime (C++ function)

 	helicsPublicationAddTarget (C++ function)

 	helicsPublicationGetInfo (C++ function)

 	helicsPublicationGetKey (C++ function)

 	helicsPublicationGetOption (C++ function)

 	helicsPublicationGetType (C++ function)

 	helicsPublicationGetUnits (C++ function)

 	helicsPublicationIsValid (C++ function)

 	helicsPublicationPublishBoolean (C++ function)

 	helicsPublicationPublishChar (C++ function)

 	helicsPublicationPublishComplex (C++ function)

 	helicsPublicationPublishDouble (C++ function)

 	helicsPublicationPublishInteger (C++ function)

 	helicsPublicationPublishNamedPoint (C++ function)

 	helicsPublicationPublishRaw (C++ function)

 	helicsPublicationPublishString (C++ function)

 	helicsPublicationPublishTime (C++ function)

 	helicsPublicationPublishVector (C++ function)

 	helicsPublicationSetInfo (C++ function)

 	helicsPublicationSetMinimumChange (C++ function)

 	helicsPublicationSetOption (C++ function)

 	helicsQueryBrokerExecute (C++ function)

 	helicsQueryCoreExecute (C++ function)

 	helicsQueryExecute (C++ function)

 	helicsQueryExecuteAsync (C++ function)

 	helicsQueryExecuteComplete (C++ function)

 	helicsQueryFree (C++ function)

 	helicsQueryIsCompleted (C++ function)

 	helicsQuerySetQueryString (C++ function)

 	helicsQuerySetTarget (C++ function)

 	helicsSubscriptionGetKey (C++ function)

 HELICS 404

HELICS 404

Page not found. Please visit the homepage of HELICS documentation [https://docs.helics.org/en/latest] or contact the developers at gitter [https://gitter.im/GMLC-TDC/HELICS].

 Docker installation

Docker installation

Requirements

Docker version 19

Getting a docker from the hub

To search a docker from any repository you can use this command

docker search helics

	NAME

	DESCRIPTION

	helics/octave

	container for testing octave

	helics/buildenv

	containers for helping with the CI test of helics, including building on different compilers in different configurations

	helics/clang-tsan

	container for running clang thread sanitizer

	helics/buildenv:sanitizers

	container for running clang sanitizers

	helics/helics

	container with installed HELICS executables

the helics/helics repository contains a number of tags corresponding to different versions of helics with the all the apps and executables present for each different version.

docker pull helics/helics:develop

Build a new docker image

docker build -t clang-test -f config/Docker/Dockerfile-HELICS-apps .

The HELICS and Sanitizers Dockerfiles will accept a MAKE_PARALLEL build argument that can be used to set how many threads make uses. On machines with low memory such as those used by CI services, setting this too high can result in out of memory compiler errors.

docker build -t clang-test -f config/Docker/Dockerfile-HELICS-apps --build-arg MAKE_PARALLEL=12 .

In addition to this, the HELICS-apps Dockerfile for the HELICS apps currently accepts an ENABLE_GITHUB argument (defaults to false) that when set to true will replace the copied current source directory with a copy of the HELICS source code checked out from GitHub. Due Docker not allowing conditional copy commands, it is recommended to run the docker build from a relatively empty working directory. It will also take a GIT_BRANCH argument (defaults to develop) that can be used to control which GitHub branch or tagged version gets checked out.

docker build -t helics-apps-test -f config/Docker/Dockerfile-HELICS-apps --build-arg ENABLE_GITHUB=true --build-arg GIT_BRANCH=v2.4.0 .

Working with dockerhub

docker images # will show all images available on your machines

	REPOSITORY

	TAG

	IMAGE ID

	CREATED

	SIZE

	helics-apps-test

	latest

	a2b679e23225

	2 hours ago

	1.96GB

docker tag a2b679e23225 helics/helics:latest # this will tag the image ID for docker repository helics/helics
docker push helics/helics:latest # This will push the image to docker hub repository

Any user can pull you docker image using the following command:

docker pull helics/helics:latest

Helics docker can be found on the following web site.

https://cloud.docker.com/u/helics/repository/list

Remove a docker image

docker image rmi a2b679e23225 -f # using -f force to remove the image id

Run a interactive shell using a docker image as a container

docker run -it helics/helics /bin/bash

You can see what container is running with the ps command

docker ps

	CONTAINER ID

	IMAGE

	COMMAND

	CREATED

	STATUS

	PORTS

	NAMES

	98d7005cba00

	helics/helics

	“/bin/bash”

	2 seconds ago

	Up 2 seconds

	-

	wizardly_gagarin

Working with docker container

When you run a image, docker creates a container, as soon as you exit, the container is destroyed.
You can detached from container (like the application screen) and reattach later.

	to detached: CTRL-P CTRL-D

	to reattached the container found in the table above:

docker ps
docker attach <Container ID> or <Container Name>
docker attach wizardly_gagarin
...
or
...
docker attach 98d7005cba00

If you modified a container and you would like to save the modification, you can use the commit command.

docker commit -m "I modified this container" 620c7588882e helics-modified

NOTE: The number is the Container Id found with docker ps

to display all container

docker ps -a

Remove all stopped containers

docker rm $(docker ps -a -q)

Reference

All docker command can be found here:

https://docs.docker.com/engine/reference/commandline/cli/

 <no title>

 Running hello_world example using HELICS windows installer + Visual Studio 2019

Running hello_world example using HELICS windows installer + Visual Studio 2019

1. Make sure that you have downloaded HELICS through the installer

	To get to the installer you can access it through either of the following links:

	https://github.com/GMLC-TDC/HELICS/releases

	https://docs.helics.org/en/latest/installation/index.html - where you will see this:

[image:]

	Once you have gotten to the list of releases, you will see something like this:

[image:]

There is a file with the .exe suffix like the highlighted file above. That will be your Windows Installer. Download it.

	After downloading the executable, run it.

** Windows may give you a warning but you may run it anyway. **

Once you allow it to make changes, you will have the set up guide appear:

[image:]

	Click through:

Next > I agree > Choose to add system variables if you would like > Next > Choose Destination folder for your install > Next > Choose Start Up Folder > Next > Keep all install components > Install

	This should install HELICS onto Windows and your folder directory should look somewhat like this:

[image:]

Inside the following folders (bin, lib, and include) you find this:

	bin:

[image:]

	lib:

[image:]

	include:

[image:]

** Keep track where the dynamic and static libraries are. We will need to know these locations to link it in Visual Studios! **

2. Pull the HELICS example folder down from github

git clone https://github.com/GMLC-TDC/HELICS-Examples.git

	To navigate to the C hello_world example: -folder-HELICS-examples-downloaded-to-/c/hello_world.

It should look like this:

[image:]

3. Load the examples into Visual Studio

Open up Visual Studio. We will do this twice since helics_world_sender.c and helics_world_receiver.c will need to be ran as two different executables.

We will first do this for helics_world_sender.c .

a. When you open up Visual Studio, there will be a welcome/get started pop up. You will see panel like this:

[image:]

You will choose “Create a new project.”

b. Choose “Empty Project”

[image:]

Even though it says it is C++, we will be using this option and simply changing the suffix/extension.

c. Enter name the project with the file name without it’s suffix (we will first do hello_world_sender):

[image:]

d. Choose “Create”.

e. Repeat steps a-d except this time use the name hello_world_receiver.

Your “Configure your new project” screen should look like this:

[image:]

f. Once both projects have been created, we will add their respective source files.

i. In Solution Explorer,

Right click hello_world_sender > Add > Existing item ...

[image:]

ii. Go to the location of where you pulled down the HELICS example:

[image:]

Click Add. You should see the hello-world_sender.c file appear in the Solutions Explorer under the Source Files.

Now do the same thing with hello_world_receiver.c in the hello_world_receiver Visual Studio project.

4. Link HELICS in visual studios to run example

a. Since we are using the HELICS installer, only the release version is attached. We need to make sure we’re running on “Release” and “x64” settings. check that these are set in each tool bar of the projects:

[image:]

[image:]

b. Go to Project > Properties > C/C++ > All Options > Additional Include Directories > Down Arrow > Edit

This is where you will add the Include Directory of your HELICS installation. Check Step One (your path should end with include instead of helics, i.e. from the example it should be C:/Users/arbitraryfolder/HELICS/helics_2_6_0/include:

[image:]

Click Ok > Apply. ** Do not exit out of Properties yet **

c. Go to Linker > All Options > scroll all the way up

i. Additional Dependencies > Down Arrow > Edit

This is where you will add the HELICS static library name: helicsSharedLib.lib

[image:]

Click Ok > Apply. ** Do not exit out of Properties yet. Stay in Linker**

ii. Additional Library Directories > Down Arrow > Edit

This is where you will add the directories that hold the HELICS static and dynamic libraries, helicsSharedLib.lib and helicsSharedLib.dll, i.e. from example:

C:/Users/arbitraryfolder/HELICS/helics_2_6_0/bin

C:/Users/arbitraryfolder/HELICS/helics_2_6_0/lib

[image:]

Click Ok > Apply > Ok (This will exit you out of Properties)

d. Go to ToolBar > Build > Build Solution

e. Once the solution is built, go to the Solution Explorer. You will go to the ToolBar and click on the folder/window icon next to the Home Icon. Once clicked the down arrow, you will either see

Folder View

	if you see this, you can just simply click Folder View and it’ll switch you over to the Folder View

or

Two Options: .sln and project name with path

	if you see this, you will click the project name with the path

[image:]

Here you see that there are two options.

Once you switch to Folder View or the option with the name + path, you will go to the Folder x64 > Release. You should be able to find the helics_world_sender.exe or the helics_world.receiver.exe file depending on which project you’re looking at right now.

Here you will add the dynamic library. This is crucial part and cannot be missed or else we will have an error when we try to run the simulation.

i. Right Click on Release > Click Open Folder in File Explorer

[image:]

ii. In another File Explorer, open up to your HELICS bin folder. You will find the helicsSharedLib.dll file. This will then be COPIED to the Release Folder that was just opened.

Before .dll file is copied over:

[image:]

Copy the file over simply by

Click on the helicsSharedLib.dll in bin folder > Ctrl + c > Go over to Release folder > Ctrl + v

After .dll file is copied over:

[image:]

iii. Go back to Solutions View in order to run the solution (executable).

To do this, go back to Solution Explorer toolbar and click on folder/window icon next tot the Home Icon. Click the down arrow and choose option with .sln extension.

f. Once Solution is built, do steps a-e for other project (if you just did helics_world_sender, do helics_world_receiver, vice versa).

5. Run the example

To run the example we must have the broker running and also two of the solutions built into executables and ran.

The broker should be located in your HELICS bin folder.

a. Open a command prompt on windows, and go to the folder & run:

helics_broker -f2

This will tell the broker to expect two federates (helics_world_sender & helics_world_receiver).

	If there is a commError regarding zmq reply socket, it is because you are waiting too long to run the federates and the broker timed out.

b. Run helics_world_sender

Click Green Play button 'Local Windows Debugger'

** Microsoft Visual Studio Debug console should pop up **

c. Run helics_world_receiver

Click Green Play button 'Local Windows Debugger'

** Microsoft visual Studio Debug console should pop up **

This is how each prompt/console should look like after

broker, helics_world_sender, helics_world_receiver, respectively :

[image:]

Congratulations you ran your first HELICS simulation through Visual Studio!

 Introduction

Abstract

TDC Specification document describing philosophy, layers, APIs, testing requirements, etc.

Introduction

This guiding document describes the development specification for the TDC co-simulation tool.

Basic Requirements

The following was adapted from TDC Simulation Requirements developed by team November 7, 2016

Required by Stakeholders

	High Scalable: Support co-simulation with 2 to >100,000 federates (WECC capable)

	Cross-platform:

	Windows Laptops and Workstations

	OSX workstations

	Linux-based Supercomputers

	Modular:

	Built to support separate software components

	Components can be used in conjunction with other components of the system

	support diverse TDC+ tools:

	T: GridDyn.

	Short term integration goals : PFLOW (ANL), MatPower

	Future integration with PSSE, PSLF

	D: GridLab-D.

	Short term integration goals : OpenDSS.

	Future integration with CyME, Synergi, Power Factor

	C: ns-3, latency

	M: FESTIV

	U: User-provided controller/virtual machine model

	H: HLA-compliant user models

	F: FMI-compliant user models

	Open Source:

	under a permissive (BSD-style) licensing

	Support TDC identified use cases:

	“Reiteration” with multiple data transfers during a single time step

	Support variety of simulation types

	Discrete Event

	Time Series

	Quasi-Static Time Series

	Phasor (Dynamics)

	Usability:

	“Research-grade” usability

	Standard file/folder structures and I/O

	Execution tools/scripts

	Documentation and Examples

	Templates for common use cases

Nice to haves

	Check-pointing

	Roll-back

	Load balancing / tracking of location of federates

	Built-in scenario / sensitivity analysis

	Visualization

	We will need something specific for our use cases, but not a “turn key” solution for all use cases

	Interface / Model Creation / Model Ingestion

	Keep relatively simple for now, but it can be expanded later

	Assume the individual tools in standard format for now (no uber or base modeling language)

	Prototype one example (e.g., CYME->GLD)

	Data Collection and Analysis

	Standardize / inform on a common data model / API for common classes of analysis

Overview

Key questions

Broker vs. Broker-less vs Hierarchical Broker

	Single broker is useful because it represents single IP address.

	This mirrors HLA portico approach

	Single broker will not scale

	Hierarchical broker may scale better but may put burden on modelers.

Location/structure of federate configuration data

	One large definition

	Individual files

Supported data exchange patterns

Time coordination

	Syncing

	Reiteration

	Advancement

What features should we borrow from

	HLA

	FMI

	FNCS

Over-arching Design Decisions

Static Federate Connections

TDC-Tool will assume all federate connections are static, that is known in advance.

Note: dynamic additions of federates at runtimes can be emulated by predefining connections and only exchanging data at a later time.

Layers

The following layers will be defined in the TDC co-simulation tool.

[image:]

For each layer, the following are described

	API

	Testing Specification

User Interface

The complexity of co-simulation drives us to the need for applications that support the user in creating models, configuring the co-simulation engine and simulator connections, automate the deployment of the simulators to the appropriate computers (whether local, hpc, or cloud), and process and visualize the information produced.

This project does not have the resources to tackle all elements of this process, but may address a small subset of them as a function of producing results. This section will lay out an ideal state, while suggesting a path within the resources of the current project.

The following figure provides a block diagram of the elements needed to support the deployment of the TDC tool, and a workflow for how they might all fit together. The following sections will describe each of the purple and gray elements in more detail.

[image:]

Scenario Generation

Generating scenarios, and the underlying models to support the scenarios, is fundamental to using the co-simulation environment. However, describing those scenarios can be time consuming and error prone. For example, a GridLAB-D model may contain a million lines of model code, but one errant setting could drastically change the solution. Now, multiply this by 10,000 distribution circuits, add transmission and market simulators, and layer communication networks over the top, and the likelihood of ill-configured simulations grows. At this larger scale, simply managing the correspondingly large set of files and initiating the runs for each simulator requires automation. Automation of scenario generation is necessary to maintain model continuity and ensure proper alignment across domains.

There are range of existing example tool sets that we may be able to draw from:

	The Open Modeling Framework (OMF) by NRECA, uses a Python-based tool to construct a GridLAB-D model from user inputs and a pre-defined power flow model. More information can be found on the GridLAB-D website: OMF Documentation [http://gridlab-d.sourceforge.net/wiki/index.php/OMF_Scripting_Documentation]. However, the OMF is currently limited to distribution system models and GridLAB-D.

	Arion [https://github.com/pnnl/arion] is an open-source, Java-based tool that allows the user to construct models from a library of objects, providing randomization and other functions for easier construction. It currently supports limited elements of ns-3, GridLAB-D, FNCS, and MATPOWER. It also creates a Heat Orchestration Map [http://docs.openstack.org/developer/heat/template_guide/hot_spec.html] on an OpenStack environment that configures the necessary simulators, network parameters, and virtual machines to orchestrate an experiment. At this stage, the technology is available on GitHub, but is not mature.

	The IGMS project developed extensive scenario generation tools including an evolved form of the OMF GridLAB-D generator (on github as glmgen), and facilities for setting up directory and file for T+D simulations with GridLAB-D, FESTIV, MATPOWER, and PFLOW, that can be extended for other tools. These tools also support matching distribution load to transmission system buses to create integrated T+D datasets when real data is not available.

The scenario generator shall:

	​

Additionally, the first time a scenario or use case is created is the most difficult. To ease user entrance into the tool(s), it is of utmost value to re-use existing model sets and allow users to not only create their own models, but also modify existing, previously used models. This implies a model library or repository that users can draw from and add to.

Open question: Do we use our existing tools to do this? Which ones?

Open question: How far do we define this (e.g., all the way down to the programming language)? Or do we want to define general parameters of a framework that we can then incorporate functions into later? Do we want to define a philosophy or specific software requirements?

Configuration

Automation

Visualization and Data Processing

API

Testing Specification

Simulators

While the co-simulation environment will support any simulation element that meets the minimum requirements, it is envisioned many TDC applications will rely heavily on a common style of simulators. As a result we will define two classes of simulator interfaces:

	General purpose, including HLA and FMI interface standards.

	TDC optimized for common TDC application types:

	Transmission Simulator

	Distribution Simulator

	Communication Simulator

	Market Simulator

The lower-level details of these interfaces are defined in the “Application” Section below; however, this section provides two key extensions: standardized data exchange patterns (variable naming, types, timing/synchronization, etc.) and a higher-level API for certain common operations.

Common Configuration

Note that as we are modeling multiple layers of cyber-physical power systems, there is a natural split between simulation coordination (e.g. synchronizing simulation data), and communication-system data. In some cases the same datapoint will be represented in both layers, though with subtle differences. For instance the voltage at a particular node may be exchanged for both simulation coordination and via the communication system. The simulation coordination physical data should be exchanged as accurately and fast as possible, likely with re-iteration since it represents a physical link. In contrast the same data seen in the communication system would be exchanged only once (no reiteration), likely with sensor delay and possibly sensor noise introduced.

As such the configurations here can in some cases be mixed and matched, for instance to combine some type of simulation with various types of communication situations. As such, there are multiple partial configurations described for each group, each with a unique identifier. For a given simulation, the complete configuration could then be described using a combination of idenfiers, such as P1-C1-M2 for an integrated transmission-distribution quasi-steady state simulation with a XXX market, where the communication of the market signals is represented as a delay.

Note: in each group, a * is used to indicate the configurations (proposed) to be built out first. These are defined in more detail below.

Multiple Power-flows

Many configurations: T+D, T+D, D+D, resulting in many combinations First distinguished as single-pass vs reiterative, and further distinguished by the type of power flow interface presented:

	3-ph unbalanced

	positive sequence

	3-sequence

For each, the raw power signals will typically be exchanged using 3-ph representation, but the higher-level APIs provide mechanisms to manage positive sequence and 3-sequence to 3-ph unbalanced conversion.

*Config P0—Single Power flow: The null power flow case with only a single simulator. This could be for T+C, D+C, or either with building or external controllers.

*Config P1—T_ps+multi-D_3ph QSTS: Perhaps the most common is expected to be steady-state transmission with multiple distribution federates for quasi-steady-state time series (QSTS) analysis. In this case, a single transmission simulator typically provides positive sequence powerflow (e.g. MatPower, PSSE, etc.) that interacts with with multiple 3-ph unbalanced distribution simulation and nominally utilizes reiteration, though single-pass interactions also acceptable. The single pass configuration can be clarified using an “A” suffix (e.g. P1A), while reiteration is fully “P1B”.

*Config P2—T_ps+multi-D_3ph Dynamic: For dynamic-scale (ms time step), transient stability simulations, we have a very similar interface to QSTS, but primarily differentiated by the need to provide richer dynamic phasor and frequency data for the interface. Ideally both federates support this data with higher fidelity models, though in some cases only transmission will have full dynamics, while distribution continues to use QSTS. Here reiteration is effectively required, though an “A” suffix can be appended in the case where no-iteration is used.

Config P3—T_3sq+multi-D_3ph QSTS[^1]: This use case builds on recent work by Q. Huang and Vittal [^2] that represents the transmission dynamics using separate simulations for each of the 3-sequences and then converts to 3-phase for the distribution simulators. As above, reiteration is effectively required and an “A” should be appended if no reiteration used.

Config P4—T_3sq+multi-D_3ph Dynamic[^3]: This use case builds on recent work by Q. Huang and Vittal [^2] that represents the transmission dynamics using separate simulations for each of the 3-sequences and then converts to 3-phase for the distribution simulators. As above, reiteration is effectively required and an “A” should be appended if no reiteration used.

Config P5—T_3ph+multi-D_3ph QSTS: This configuration extends P1 to use full 3-phase simulation for the transmission system. As above the the suffix “A” indicates single pass and “B” indicates reiteration.

Config P6—T_3ph+multi-D_3ph Dynamic: This configuration extends P2 to use full 3-phase simulation for the transmission system. As above, reiteration is effectively required and an “A” should be appended if no reiteration used.

[^1]: QSTS version inserted for v0.4.0 May 12, 2017 (Previously P3 referred to the same setup for dynamics. The new ordering allows consistency by alternating QSTS and Dynamics
[^2]: Huang, Q. & V. Vittal. “Integrated Transmission and Distribution System Power Flow and Dynamic Simulation Using Mixed Three-Sequence/Three-Phase Modeling” IEEE Transactions in Power Systems, 2016
[^3]: This was called “P3” in version 0.3.0 dated 2/11/2017

	

	

	

Power Systems (Physical) Data to/from Communication (Cyber) Exchange

There are a wide range of communication links relevant for TDC use cases. Including:

	SCADA Data Exchange

	Synchrophasors

	AGC Dispatch

	DER control/DERMS signaling (e.g. OpenADR, SEP2.0, etc.)

	Emerging enterprise distributed protocols (e.g. OpenFMB)

	Research-grade distributed communication and control schemes

In general all of these use cases share a common style where selected points from the physical, powerflow simulation are presented as raw data and/or control signals to electrical equipment are passed to/from another federate.

Current thinking is that physical domain simulators would always present only higher level data (e.g. 3ph voltage at a node) to the co-simulator. Then an additional federate would handle protocol-specific packetization when required. This allows the domain simulators to maintain a constant interface independent of the type of communication simulation implemented.

This opens up three levels of communication simulation that might be used:

*Config C0—Direct Communication/Control Data: This is effectively the null case with no communication system simulation, but where data availability is captured. IMPORTANT: this only applies to data for the communication system under test. That is data collected from sensors or controlled remotely. It is distinct from the simulation-coordination data exchange (e.g. T-D power flow data exchange) at the physical level.

*Config C1—Delay Only: In this case, the same direct data is subject to a simulated delay before delivery.

Question: Should the co-simulation framework provide this delay service? Or do we build a simple federate that handles the delays, likely translating from one subscribed topic name and publishing on a different one.

*Config C2—Packetized Network Simulation: This is full network simulation including packetization and detailed multi-OSI-level stack simulation as provided by ns-3 and similar tools. Note: stared instead of simple delays for political reasons… seems we really need to have ns-3 in our next demo to bolster the “C” in TDC

Market Simulation

There are a wide range of market scenarios that might be captured with the TDC tool including:

*Config M1A—Wholesale LMPs: Multi-period (e.g. day ahead unit commitment, intra-daily unit commitment, real time dispatch) markets with support for price forecasts and price data (e.g. LMPs) passed to distribution

Config M1B—Wholesale LMPs with demand bids: Extends M1 to include demand bidding

Config M1C—Wholesale LMP with generator federates: extends M1 to include separate generator federates who bid through the co-simulator to a wholesale market

Config M2x—Distribution Markets: Rich Distribution markets, typically computing DLMPs (or LMP+D) as separate markets below wholesale markets. Configuration modifier A, B, C same as for M1x

Config M3—Transactive Energy: Full transactive energy, where there could be multiple layers of interactively bidding markets, including aggregators.

External Models

In addition to the core TDCM federates, and generic HLA and FMI interfaces, it seems there is value in having templates/interfaces for a few common external model types.

	User provided load model

	User provided controller

	Detailed communication server

Note: In writing short codes for the configuration, these are appended with the + connecting character.

Config +UL—User-provided load model

*Config +UC—User-provided Control System: In this configuration, the user provides their own control system(s) which could be some form of energy management system (EMS, DMS, BMS, HEMS or the like) or research controllers.

Config +US—User provided communication server model: This configuration targets cybersecurity use cases, where the user may add a detailed communication server representation that includes additional cybersecurity monitoring or other protections.

Standard Data Schemas

Conventions

This section defines a standard naming convention for valueNames, and communication federate source/destinations.

Open Issue : Discuss naming convention of hierarchy. Currently implemented in this document as “/”.

Naming convention:

Power flow:

[federate_id/]transmission_bus0..x[/feeder0…x][/node0…x]/value

Here the convention is to match hierarchy of the power systems going as deep as appropriate and ending with the specific value desired. The initial

For consistency, values should be taken from the following list:

	voltage—multiphase array of complex values, default units = V (volts)

	current—multiphase array of complex values, default units = A (amps)

	power—multiphase array of complex values, default units = W (watts)

	lmp—double, default units ($/MWh)

For each level in the hierarchy, the user can pick names to match the data. If generic names (e.g. “bus01”) are used, the numbered suffix should be zero pad the number to match the maximum expected order of magnitude.

Capitalization: all lower case with underscores as needed
Units: By default, base SI units are assumed, unless otherwise specified, with support for unit conversion for common units abbreviations.

For example, voltage is nominally presented and passed as volts (V), but can be specified in kV or MV.

Config P1A-M1A+UC

Note: this is roughly the main setup for IGMS

	Publisher

	Topic

	value

	Comment

	transmission

	bus00x/voltage

	positive sequence, complex voltage

	

	distribution

	bus00x/feeder00x/power

	3phase complex

	

	market

	bus00x/da_lmp

	array of hourly Locational Marginal Prices (LMPs) from the day ahead unit commitment

	time interval may changed per simulation for all market values

	market

	bus00x/ha_lmp

	array of 15minute LMPs for the next 4 hours from the hour ahead unit commitment

	

	market

	bus00x/rt_lmp

	Current, 5minute LMPs from real time economic dispatch

	

	market

	gen00x/da_dispatch

	array of hourly dispatch levels (as complex P) from the day ahead unit commitment

	Note: pass imaginary dispatch of zero when working with pure real power. complex power included for future ACOPF use

	market

	gen00x/ha_dispatch

	array of 15minute dispatch levels (as complex P) for the next 4 hours from the hour ahead unit commitment

	

	market

	gen00x/rt_dispatch

	Current, 5minute dispatch levels (as complex P) from real time economic dispatch

	

	transmission

	bus00x/gen0x/power_actual

	Actual power output from generator. Total, complex

	

	agc

	bus00x/gen0x/agc

	Percent of 5minute dispatch level

	Based on an off-hand comment, I am under the impression that AGC signals may be sent this way… not confirmed.

Additional Specified Configurations

Additional input required: Target of 3-5 total.

Timing/Synchronization Conventions

The intent of this section is to capture the order of data I/O during standard configurations. Crux could be agreeing on the order/master for reiteration.

Higher-level Simulator-Type-Specific API

This Simulator-Type-Specific API builds on top of the raw application API described below to provide standardized convenience functions for common use cases.

Power Flow Helpers

	pfPublish3ph(valueName, value_array, input_format=’3ph’)—Helper function for publishing voltage and current values. The function accepts any input format from {‘3ph(ase)’, ‘3seq(uence)’, ‘pos(itive sequence)’, ‘sum’} and automatically converts the values to three phase representation. The ‘sum’ type is particularly useful in the Get3ph function to combine the total (complex) power across all 3 phases.

	pfGet3ph(valueName, output_format=’3ph’)—Complementary helper function to receive 3-phase values and internally convert to other representations

Additional Simulator-Types

Testing Specification

Dummy simulators for each implemented configuration should be made available as the interface, API, and schema’s evolve. These can be tested/verified (ideally with continuous integration checks) using standard configuration combinations. In addition any configurations not included in these combinations can be tested individually with appropriate test player/tracer support.

Initial test configuration combinations:

	P1B: T+D QSTS with reiteration

	P1A-M1A: T+D QSTS, no reiteration, with wholesale LMP passed to D

	P2: T+D dynamics

	P2-C2: T+D dynamics with packetized cyber data exchange. Use case: Wide-Area control with synchrophasor exchange

Application

The general application API will act as a basic interface for applications to translate between the programs and the Core API. It is anticipated application specific API’s will be build on top of these basic API’s to provide additional functionality.

	The API will provide functionality for

	Federate or Object Management

	Event Communication

	Data Transfer

	Scheduler or Time Synchronization

This discussion is open for debate. Application federates can be described in a number of ways and I think it makes a difference in how the federate is handled by the broker and API, and so can the data being passed back and forth. I propose 3 distinct interfaces for the different types of data transfer, An individual federate may use one or more of the interfaces. A single federate may create multiple interface objects of the same or different types

all types of interfaces will have some properties

	oberver [yes/no] means the federate does not publish or transmit any data or message (observe only)

	timing – the allowable times at which the federate interacts

	periodic -only interact at specific time windows requires specification of the minimum time interval

	arbitrary - can interact at any time interval up to cosim resolution (ns?)

	rollback [yes/no]

API

The API code itself should have version in C, C++, python, and matlab at a minimum. The API code will be written in C++, with a shared library layer using only C constructs. An application could use the C shared library, or directly include the C++ code in the application.

Value based API

This API is used by federates to pass values directly, it can be iterative, And is meant to emulate a direct physical coupling, though other uses are possible.

Federate Management

	register(simConfiguration) –simConfiguration should be structure describing the simulator properties and capabilities, this should be able to be an object or file name containing the description in some format.
Borrowing ideas from FMI the objects are in a couple different states (startup, initialization, continuous, event, error, terminate). I would propose reducing this to 4 (startup, initialization, operation, finalize), may be want the error state as well. Certain functions then only work in certain modes

	setMode(mode) – change the mode of operation, probably should be a blocking function that only returns once the mode has been successfully changed.
In the startup mode a federate should register its publish and subscribe communication values either by functions or by file

	registerPublication(valueName,NAMESPACE, type, defaultValue*, units*,) – type is one of (numeric, complex, array, string, raw), units are optional and could be used as part of the type checking if the units are not translatable from one to another.
NAMESPACE is a flag either GLOBAL or LOCAL publications must be unique in the given namespace, GLOBAL is across the entire cosimulation, LOCAL is within the federate.

	registerSubscription(valueName, type, defaultValue*,units*) –type is one of (numeric, complex, array, string, raw)

	registerInterfaces(filename) – load a file describing the publications and subscriptions This should be done in the startup and should be type and name checked by the core before moving to the initialization mode.

	terminate() – the result should depend on the type of simulation, an observation only federate should have no impact on the overall simulation.

	error() – the federate encountered an error and cannot continue

Value Exchange Interface

everything should be type checked for matching with the defined values above) These functions should be available in initialization and operation mode, getValue should also be available in the finalize(or error) state as well

	getValue(valueName) – a set of functions for querying values of the different types

	publish(valueName, value) – a set of functions for publishing values

	queryUpdate(valueName) –query if a value has been updated since the last getValue Call
What I am a little unclear about is the value of historical data to applications. I would propose any buffering for these types of values be done in an higher level API built on this one.

time synchronization

Only available in operation mode (currently based on FNCS model)

	allowedTime=requestTime(nextInternalTimeStep)

a different option might be to have the time advancement be callback based in which case the API would be responsible for calling the federate function call to advance in time when appropriate.

Packet Based API

I propose a separate interface for communication messages
Basically data packets. What I would ideally want is a system that routed specific data packets through a comm system model if one were present and just delivered them if one wasn’t. The applications shouldn’t care what if any communication system model was present or not. This means that the power system model should not have to be aware of the communication system model and directly send data to and from it. It should be automatically routed through the appropriate communication system. This implies that the setup for a communication system will have to declare which federates it links with. Some mechanics of cross comm system linking will also need to be worked out but that is at a lower level. These functions should only work in operation mode. These packets will need to be buffered.

Federate Management

	register(simConfiguration) –simConfiguration should be structure describing the simulator properties and capabilities, this should be able to be an object or file name containing the description in some format.
Borrowing ideas from FMI the objects are in a couple different states (startup, initialization, continuous, event, error, terminate). I would propose reducing this to 4 (startup, initialization, operation, finalize), may be want the error state as well. Certain functions then only work in certain modes

	setMode(mode) – change the mode of operation, probably should be a blocking function that only returns once the mode has been successfully changed.
In the startup mode a federate should register its publish and subscribe communication values either by functions or by file

	RegisterEndPoint(name, NAMESPACE, userType) –there should be able to be a large number of comm points in a single federate.
NAMESPACE is a flag either GLOBAL or LOCAL Endpoints must be unique in the given namespace, GLOBAL is across the entire cosimulation, LOCAL is within the federate. userType is a user defined string nameing the type of packets that this endpoint generates or receives it should be optional and meant to aid in type checking, if included additional error checking should be included.
-RegisterTargetDestination(name, userTYpe) – function to give guidance to the Core about communication paths and setup, also to aid in validity checking.

	terminate() – the result should depend on the type of simulation, an observation only federate should have no impact on the overall simulation.

	error() – the federate encountered an error and cannot continue

message exchange interface

	Transmit(source, destination, data, datalength) -destination could be inside the same or different federate.

	packetCount(destination) –return the number of packets available.

	Receive(destination) –get one of the packets available or block until one is available. the source should be part of the return information –destination should be able to be grouped (like a subnet) so a single receive function could be called for many destinations if there is internal routing.

We may want to allow the ability to specify a callback here to be called on packet arrival?

Packet Filter API

The means by which a comm simulation interacts with the other types of simulations is not clear cut, there are timing issues and delays and packet translation an other issues which get awkward if they are not designed in. In the cosimulation framework there is a need for simulating direct physical connections with real values passed back and forth, and those same simulations interact with the digital world translating between physical phenomenon and digital communications, and still others types of federates that interact purely in the digital communication world. This separations of purpose lead to the concept of a separation of functionality to better tune the interface to correspond to the physical world. So In addition to the value based interface and a packet based interface we add a third interface intended to operate on packets, for translating, manipulating, or delaying them.

Federate Management

	register(simConfiguration) –simConfiguration should be structure describing the simulator properties and capabilities, this should be able to be an object or file name containing the description in some format.
Borrowing ideas from FMI the objects are in a couple different states (startup, initialization, continuous, event, error, terminate). I would propose reducing this to 4 (startup, initialization, operation, finalize), may be want the error state as well. Certain functions then only work in certain modes

	setMode(mode) – change the mode of operation, probably should be a blocking function that only returns once the mode has been successfully changed.
In the startup mode a federate should register its publish and subscribe communication values either by functions or by file

	RegisterSrcFilter(srcEndpoint, srcUserType) SrcEndpoint is a named src endpoint to filter packats from, it can be from a packet generation API or packate pfilter API
-RegisterFilterOutput(outputName, NAMESPACE, outputType)
outputName is the endpoint packets reappear from, it should be unique in the federate but multiple srcEndpints registrations can output from the same outputName endpoint. srcUserType must match the definition from the src endpoint, outputUserType defines what the output type is. THis function defines an endpoint which processed packets may exit. The name may be the same as one defined by a message exchange interface

NAMESPACE is a flag either GLOBAL or LOCAL Endpoints must be unique in the given namespace, GLOBAL is across the entire cosimulation, LOCAL is within the federate. userType is a user defined string nameing the type of packets that this endpoint generates or receives it should be optional and meant to aid in type checking, if included additional error checking should be included.

	RegisterDestFilter(destEndpoint, inputType) destEndpoint is a named dest endpoint to filter packats before sending to the destination, it can be from a packet generation API or packate filter API

	terminate() – the result should depend on the type of simulation, an observation only federate should have no impact on the overall simulation.

	error() – the federate encountered an error and cannot continue

message exchange interface

	Transmit(source, origSource, destination, data, datalength,delay*) -destination could be inside the same or different federate. optional delay

	packetCount(destination) –return the number of packets available.

	Receive(destination) –get one of the packets available or block until one is available. the source should be part of the return information –destination should be able to be grouped (like a subnet) so a single receive function could be called for many destinations if there is internal routing.

We probably want to allow the ability to specify a callback here to be called on packet arrival? particularly for packat processors that do not depend on time, and are simply functions.

Testing Specification

We should develop a set of semi-configurable mini-federates that test all the possible combinations of federates with an assortment of communication patterns with dummy data and exercise the API fully.
The same set could be used for testing the broker functionality.

Core

The core represents a distributed key/value store. The specification does not dictate the on-the-wire protocol for the distribution of values. The specification does not dictate whether zero or more brokers are used.

Initialization occurs by parsing a configuration file or using the step-by-step API. The return from initiatlize() or exitInitializationMode() implies that all initial values have been exchanged. It is valid to then request a time advance of zero or more time steps.

Time advances are allowed to be greater than or equal to the current time. If the same time is requested more than once, an internal counter logs the number of times the same time has been requested. In other words, internally a pair of values is incremented – (time,counter) – where the caller only is exposed to the time value. Every instance where time is actually incremented, the counter is reset to zero.

API

#ifndef _GMLCTDC_CORE_
#define _GMLCTDC_CORE_

#include <string>
#include <utility>
#include <vector>

using ::std::pair;
using ::std::string;
using ::std::vector;

namespace gmlctdc {

 typedef unsigned long long time;
 typedef double real;
 typedef long integer;
 typedef int boolean;

 void initialize();
 void initialize(const string &filename);
 void enterInitializationMode();
 void setName(const string &name);
 void setTimeDelta(const string &value_and_unit);
 void setTimeDelta(const time &nanoseconds);
 void setTimeDelta(const time &base, const time &multiplier);
 void registerSubscription(const string &key, const string &ns, const string &type, const string &units);
 void registerPublication(const string &key, const string &ns, const string &type, const string &units);
 void exitInitializationMode();

 bool isInitialized();
 string getName();
 vector< pair<string,string> > getSubscriptions();
 int getID();
 int getFederationSize();

 real getReal(const string &key, const string &ns);
 vector<real> getRealVector(const string &key, const string &ns);
 integer getInteger(const string &key, const string &ns);
 vector<integer> getIntegerVector(const string &key, const string &ns);
 boolean getBoolean(const string &key, const string &ns);
 vector<boolean> getBooleanVector(const string &key, const string &ns);

 void setReal(const string &key, const string &ns, const real &value);
 void setRealVector(const string &key, const string &ns, const vector<real> &value);
 void setInteger(const string &key, const string &ns, const integer &value);
 void setIntegerVector(const string &key, const string &ns, const vector<integer> &value);
 void setBoolean(const string &key, const string &ns, const boolean &value);
 void setBooleanVector(const string &key, const string &ns, const vector<boolean> &value);

 time timeRequest(time next);

 void die();
 void finalize();

 vector< pair<string,string> > getEvents();
}

#endif /* _GMLCTDC_CORE_ */

Testing Specification

Platform

A goal of the co-simulation environment is to be portable across a
wide range of computing environments ranging from desktop, cloud services,
and supercomputers.

OS specific APIs are being avoid and additional library requirements
are being kept to a minimum to enable easier deployment.

Operating Systems

Operating systems to be supported are Unix (Linux), Windows, and
MacOS. It is not expected that there will be large numbers of
operating specific requirements.

Operating system specific features that are required will supported by
introducing small wrapper classes and methods. OS specific versions
of these will be supplied for the supported operating systems.

Transport Layer

The targeted range of platforms have different communication transport
layers that are optimized for the platform. Supercomputers
traditionally have specialized communication fabrics such as Myrinet
while workstations traditional do not. Due to these differences the
TDC tool will support multiple communications layers. The two initial
targets are Message Passing Interface (MPI) and ZeroMQ. MPI is the
most commonly used standard and portable message-passing system
designed for parallel computing architectures. ZeroMQ is a an open
source distributed message engine portable to a wide verity of
systems. ZeroMQ is the target for the non-supercomputer
architectures.

The TD&C tool will be architected with a internal transport layer API
to serve as the interface to the specific communications layer. An
MPI and ZeroMQ implementation will be supplied but other communication
systems could be added if needed.

MPI

The MPI-3 specification will be targeted excluding dynamic process
management features. The batch scheduling systems deployed at most
supercomputer centers does not support dynamic process management.
The TD&C tool is initially is targeting static federate
configurations.

ZeroMQ

ZeroMQ version 4.2.0 or greater is being targeted.

Languages and Compilers

C++

The TD&C tool will principally be written in C++ for speed and memory efficiency.

The C++14 standard as supported by gcc 4.9.3 is the C++ language
target. Later standards are not available on the large scale HPC
machines being targeted.

Specific compilers that are being targeted are:

	Visual Studio 2015

	GNU GCC 4.9.3

	Clang 3.5

	Intel 16

Python

Python bindings can be supported for both Python2 and Python3. The bindings will at a minimum support Python >=2.7.x. Python >=3.5 is expected to be supported. Cython will be used to provide C/CPP to Python bindings, since that will allow better error reporting.

Examples

	Player example

	Recorder example

MATLAB

MATLAB bindings will be provided using the mex functionality.

Examples

	Player example

	Recorder example

Custom plugin API

Documentation will list the minimum necessary functions that will have to be implemented to build a custom plugin.

External Package Dependencies

The Question of using Boost is still up for debate.

Open Issue : Steve’s comments on Boost - Steve has used Boost virtually all C++ projects lately. There is a lot provided that is still missing in STL. The team might want to restrict to a specific set of packages in boost.

Open Issue : I/O libraries

Configuration, Build, and Test

CMake is the targeted build/configuration system. CMake is a cross
platform set of tools that support the targeted operating systems and
compilers. It supports building standard Unix Makefile as well as
common IDE systems such as Visual Studio and XCode. CMake 3.4 or
greater will be required.

In addition to configuration and build support, CMake provides a test
framework which will be utilized to drive an automated set of
regression tests.

Open Issue : Should CTest be used? Since we are using CMake CTest is already there.

Source Code Control System and Development Environment

Github will be employed as the SCCS system as well as issue tracking.
This will enable easy interacting with the distributed team and
provides a smooth transition path for enabling access to a wider
community. A continuous intergratiion server like TravisCI will be implemented for testing.

API

Testing Specification

 Co-Simulation Overview

Co-Simulation Overview

Co-simulation is an analysis technique that allows simulators from different domains to interact with each other, typically by exchanging values through the course of the simulation that define other simulators boundary conditions. For example, you may have a model and simulator that is able to describe atmospheric conditions and weather as they progress through time. You may have just found out about another well-established model and simulator that describes the growth of vegetation over large geographic areas. In reality, these two systems clearly interact with the precipitation and temperatures impacting the growth of vegetation and the amount of vegetation impacting air temperature and moisture content. These models, though, may treat this interaction as a boundary condition such that the atmospheric simulator assumes a fixed rate of sunlight reflection from the ground and the vegetation simulator uses a time-series historical precipitation values.

Co-simulation allows the coupling of existing models and simulators by breaking down these boundary condition barriers and calculating results that are more realistic and dynamic. In this case, while the atmospheric simulator is able to calculate the current weather using the latest values of surface reflectivity and humidity contributions from the vegetation, the vegetation simulator is able to use the latest values from the atmospheric simulator to determine the moisture content of the soil and the ambient temperature.

[image: Atmospheric simulation]

It’s easy to imagine this hypothetical model being extended with other simulators throughout the ecosphere, incorporating models describing the behavior of the ocean, wildlife, even human agriculture. Rather than trying to build a single simulator that models all of this functionality, co-simulation allows us to use existing simulators that have the longer-term investment and validation behind them; that experience is leveraged into building simulations of complex systems of systems.

Co-simulation also has a built-in parallelism that allows it to be used to scale up to very large models. Particularly for systems with limited interactions between portions of the models, the value exchanges that take place during co-simulation are limited, allowing the individual instances of the simulators to run independently. Using our previous example, it is easy to imagine that there is limited to no interaction between vegetation in Oregon and vegetation in Texas (except through the atmosphere). Simulations of the vegetations in each of these states can run independently due to this lack of interaction, each providing values to the atmospheric model that indirectly couples them together. When able to be constructed in such a manner, the limitations on the size and complexity of the co-simulation become limited more by computing resources than by the capabilities of the individual simulators.

This being said, coupling these simulators together effectively can be summarized in the execution of two very related functions:

	Maintaining synchronization of all the simulator instances running

	Facilitating the data transfer between them

Maintaining synchronization is required when working in a heterogeneous simulation environment where each simulator’s concept of time is different and the computation time required by each simulator instance can vary widely. Without the regulation of the universal co-simulation time, individual simulator instances could easily run ahead of the rest, simulating days and weeks ahead of the others.

And when one simulator instance is simulating one week ahead of the others, it becomes impossible for the results from that simulation to affect the rest of the simulator instances; the values it passes and receive are literally from a different point in time then the rest and are effectively meaningless. Without the synchronization of time, there is not way for the simulator instances to affect each other and without this interaction, the results of the co-simulation are meaningless.

HELICS, at its core, has been designed to do these two functions as efficiently, quickly, and comprehensively as possible to support a wide variety of simulators and models. Simulators with HELICS support have been modified in such a way so as to allow HELICS (really, a HELICS core object but we’ll get to that in the section on timing) to advance the time of the simulator and provide it new values for specific variables that it is interested in. Making this modification to the simulator is not necessarily difficult but it must be done in such a way as to allow for these two fundamental functions to be executed.

Even after a simulator has been modified to support HELICS, users of that simulator who are building co-simulations have the task of constructing or designing a co-simulation to achieve the results they desire. Many simulators have thousands of potential values they can provide to other simulators and generally, most will not be needed by other simulators. It is the role of those designing the co-simulation to correctly configure each of the simulator instances such that the appropriate values are sent and received by the simulator instances and are mapped to the appropriate parameters inside each simulator. For a small number of simulators with a small number of values, this is not necessarily difficult but as the size of the co-simulation grows, this task becomes more challenging.

 Debugging

Debugging

Debugging a co-simulation can be challenging. There are often many components running a on multiple machines and traditional debugging doesn’t work that well for coordinating since the processes are often independent.
Enhancing the tools for debugging a HELICS based co-simulation is one area of focus for the coming year and we expect significant changes and improvements as we gain experience in this area. There are now a few basic capabilities in HELICS that support and help with debugging. Those capabilities are outlined in this document and will continue to be expanded.

Logging

HELICS provides built-in support for various types of logging from federates, brokers, and more. See Logging for more details on how to enable and use.

Players and Recorders

Often an early step in debugging is to isolate the problem. HELICS provides the Recorder and Player apps to help with doing so for federates and to enable modular development and testing of federations even before all of the federates are working:

	A recorder is just that: a tool that readily records some or all of the traffic that is sent via HELICS (both value-based publication/subscription and message end points). Looking through this output can confirm that the data and timing in HELICS behaves as expected.

	The basic idea for a player is that rather than running all of the other federates, you can test out a single federate or subset by reading the data that other federates would send from a file instead.

Players and recorders can also complement each other, since the files created by a recorder can be played back directly by the players, making it possible to take the partial results from a part of a federation as a recording and then play back–without possible delays or other challenges from the other federates–to troubleshoot the rest of the federation.

Queries

Queries are regarded as a key component of debugging. They are asynchronous from the main simulation timing and can be used from anywhere in the co-simulation. There are a number of queries that can be used to get the publications, inputs, endpoints, and filters in a co-simulation and get structures with the connections between them. See Queries for more details on the specific queries and how to execute them.

HELICS-CLI

The HELICS CLI tool is a tool that can help set up a co-simulation and will eventually have significant debugging capabilities which make use of the underlying capabilities documented here. It is recommended that this tool be used to help with debugging.

Global Time Barrier

The capability of halting execution at a particular simulation time is a fundamental underlying capability for debugging a co-simulation. The global time barrier capability in HELICS will prevent any simulation that has not reached the given time from granting any time greater or equal to the barrier time. If the barrier is issued and a federate is already passed the given time, it will be blocked at its current time. Once a barrier is issued it will not halt an executing co-simulation until a requestTime operation is called by the federate. There are two mechanisms for creating a barrier, some API calls on the broker, and through a REST API in the webserver.

API calls

The Broker API has two functions related to the time barrier

setTimeBarrier(Time time);
clearTimeBarrier();

For the C API

helicsBrokerSetTimeBarrier(helics_broker brk, helics_time time, helics_error *err);
helicsBrokerClearTimeBarrier(helics_broker brk);

For Python and the other language API’s

helicsBrokerSetTimeBarrier(helics_broker brk, helics_time time)
helicsBrokerClearTimeBarrier(helics_broker brk)

The first function creates or updates a time barrier.
The second clears it. There are no restrictions on what can be done. Simulations start at time 0 so giving a negative time to the setTimeBarrier operation will effectively clear the barrier.

Webbserver interface

Barriers can also be created and updated through the Webserver. This includes the websocket server and the HTTP REST API components of the webserver.

Barriers can be created or updated with an HTTP post command
<webserver>\<broker_name>\barrier with time=<value> in the body. The time can be specified as decimal seconds of simulation or as a value+unit such as “15 ms” or “34 min”

They can be deleted through an HTTP delete command to <webserver>\<broker_name>\clear_barrier

Json instructions are also accepted to a websocket interface. Some examples follow:

{
 "command": "barrier",
 "broker": "broker1",
 "time": 15.5
}

{
 "command": "barrier",
 "broker": "broker1",
 "time": "275 ms"
}

{
 "command": "barrier_clear",
 "broker": "broker1"
}

It is expected that some additional mechanics for handling time barriers and manipulating them at finer granualarity will be available in the future and particularly in HELICS 3.0

 Environment variables

Environment variables

The HELICS command line processor has some ability to read and interpret command line environment variables. These can assist in setting up co-simulations.
In general the configuration of HELICS comes from 3 sources during setup. After setup API’s exist for changing the configuration later. The highest priority is given to command line arguments. The second priority is given to configuration files, which can be given through a command string such as --config=configFile.ini. The file can be a .ini, .toml, or .json. By default HELICS looks for a helicsConfig.ini file. The lowest priority option is though environment variables. Only a subset of controls work with environment variables. All environment variables used by HELICS begin with HELICS_.

Federate environment variables

For setting up a federate a few environment variables are used

	HELICS_LOG_LEVEL: the log level for the federate to use. Equivalent to --loglevel=X

	HELICS_CORE_INIT_STRING: the init string to pass to the core when creating it. Equivalent to --coreinit=X

	HELICS_CORE_TYPE: the type of core to use e.g. “ZMQ”, “TCP”, “IPC”, “MPI”, etc. Equivalent to specifying --coretype=X

Core and Broker environment variables

	HELICS_BROKER_LOG_LEVEL: the log level for the broker to use. Equivalent to --loglevel=X

	HELICS_BROKER_KEY: the key to use for connecting a core to a broker. See broker key

	HELICS_BROKER_ADDRESS: the interface address of the broker. Equivalent to --brokeraddress=X

	HELICS_BROKER_PORT: the port number of the broker. Equivalent to --brokerport=X

	HELICS_CONNECTION_PORT: the port number to use for connecting. This has different behavior for cores and brokers. For cores this is the broker port and for brokers this is the local port

	HELICS_CONNECTION_ADDRESS: the interface address to use for connecting. This has different behavior for cores and brokers. For cores this is the broker address and for brokers this is the interface.

	HELICS_LOCAL_PORT: the port number to use on the local interface for external connections. Equivalent to --localport=X

	HELICS_BROKER_INIT: the command line arguments to give to an autogenerated broker. Equivalent to --brokerinit=X

	HELICS_CORE_TYPE : the type of core to use e.g. “ZMQ”, “TCP”, “IPC”, “MPI”, etc. Equivalent to specifying --coretype=X

 Federates

Federates

Types of Federates

A “federate”, as previously introduced in the HELICS Key Concepts section, is a specific instance of simulation executable. For example, a federation may contain a bunch of electric vehicles (EVs), each with their own charge controller implemented as a stand-alone federate (maybe the co-simulation designer is trying out a fancy new coordination algorithm); we’ll call this code EV_coordinator_v12.exe. The code that does this charge coordination is generic in the sense that it can be used to charge any of these EVs; it works with all makes and models. But to run the co-simulation, each EV will have to have its own running instance of this code that controls the charging of a particular vehicle. If the co-simulation is testing this algorithm with five EVs, then there would be five federates each running their own version of EV_coordinator_v12.exe which presumably have unique information particular to each individual EV (battery size, maximum charging rate, etc).

(And, to be clear, a “simulator” is the executable itself. A simulator can never be a part of a co-simulation; as soon as one particular instance of that simulator begins running in a co-simulation it is considered a “federate”.)

HELICS defines three specific types of federates defined by the nature of the messages they are passing to and from the federation:

	Value federates - Value federates are used when the federate is simulating the physics of a system. The data in the messages they send and receive are indicating new values at the boundary of the federates system under simulation. Taking the example from the our high-level overview of the process of HELICS co-simulation execution, the transmission and distribution system were value federates; they each supplied messages that updates the other’s boundary condition. Value federates typically will update at very regular intervals based on the fidelity of their models and/or the resolution of any supporting data they are using; this likely is related to the time-step of the federate.

Value federates interact with the federation through what are called “interfaces”. There are a handful of different interface types which will be discussed shortly but all are intended to provide the same essential functionality: allowing values in HELICS messages to be sent from and received by a given federate. For value federates, these messages will often have one-to-one correspondence to internal variables within the federate. Using the previous simple transmission and distribution example , the distribution system may send out a HELICS message that contains the value of its internal positive sequence load variable and receive HELICS messages that it uses for its internal positive sequence substation voltage variable.

	Message federates - Message federates are used when the HELICS messages being passed to and from the simulation are generic packets of information, often for control purposes. Though these values may be physical measurements, they are treated as data to be used by an algorithm, processor, or controller. If the inputs to the federate can be thought of traveling over a communication network of some kind, it is probably coming from and/or going to a message federate. For example, in the power system world phasor measurement units (PMUs [https://en.wikipedia.org/wiki/Phasor_measurement_unit]) have been installed throughout the power system and the measurements they make are collected through a communication system.

Message federates interact with the federation through a conceptually different mechanism than a value federate. If message federates can be thought of as attaching to communication networks, the federate’s “endpoints” are the specific interfaces to that communication network. By default, HELICS acts as the communication network, transferring signals between message federates from the endpoint on one to the endpoint on another.

	Combination federates - As you might guess, this type of federate makes use of both the value method and the endpoint method for transferring data between federates. An example of a federate like this could be a transmission system simulator that is acting both as a physical model of a system as well as a collection of PMUs that are sending data to a centralized generator dispatcher. The solution to the powerflow could be used to define substation voltages to some attached distribution circuits (physical values sent via publication) and the generator output powers could be sent to the centralized controller (control/measurement values being sent over a communication network via endpoints in a message federate).

 HELICS Messages and Filters

HELICS Messages and Filters

As was introduced in the introductory section on federates, message federates (and combo federates) are used to send messages (control signals, measurements, anything traveling over some kind of communication network) via HELICS to other federates. Though they seem very similar, the way messages and values are handled by HELICS is very different and is motivated by the underlying reality they are being used to model.

	Messages are directed and unique, values are persistent. - Because HELICS values are used to represent physical reality, they are available to any subscribing federate at any time. If the publishing federate only updates the value, say, once every minute, any subscribing federates that are granted a time during that minute window will all receive the same value regardless of when they requested it.

HELICS messages, though, are much more like other kinds of real-world messages in that they are directed and unique. Messages are sent by a federate from one endpoint to another endpoint in the federation (presumably the receiving endpoint is owned by another federate but this doesn’t have to be the case). Internal to HELICS, each message has a unique identifier and can be thought to travel between a generic communication system between the source and destination endpoints.

	Messages can be filtered, values cannot. - By creating a generic communication system between two endpoints, HELICS has the ability to model simple communication system effects on messages traveling through said network. These effects are called “filters” and are associated with the HELICS core (which in turn manages the federate’s endpoints) embedded with the federate in question. Typical filtering actions might be delaying the transmission of the message or randomly dropping a certain percentage of the received messages. Filters can also be defined to operate on messages being sent (“source filters”) and/or messages being received (“destination filters”).

Because HELICS values do not pass through this generic network, they cannot be operated on by filters. Since HELICS values are used to represent physics of the system not the control and coordination of it, it is appropriate that filters not be available to modify them. It is entirely possible to use HELICS value federates to send control signals to other federates; co-simulations can and have been made to work in such ways. Doing so, though, cuts out the possibility of using filters and, as we’ll see, the easy integration of communication system simulators.

The figure below is an example of a representation of the message topology of a generic co-simulation federation composed entirely of message federates. Source and destination filters have been implemented (indicated by the blue endpoints), each showing a different built-in HELICS filter function.

	As a reminder, a single endpoint can be used to both send and receive messages (as shown by Federate 4). Both a source filter and a destination filter can be set up on a single endpoint. In fact multiple source filters can be used on the same endpoint.

	The source filter on Federate 3 delays the messages to both Federate 2 and Federate 4 by the same 0.5 seconds. Without establishing a separate endpoint devoted to each federate, there is no way to produce different delays in the messages sent along these two paths.

	Because the filter on Federate 4 is a destination filter, the message it receives from Federate 3 is affected by the filter but the message it sends to Federate 2 is not affected.

	As constructed, the source filter on Federate 2 has no impact on this co-simulation as there are no messages sent from that endpoint.

	Individual filters can be targeted to act on multiple endpoints and act as both source and destination filters.

[image: messages and filters example]

Example 1c - EV charge controller with HELICS filters

To demonstrate the effects of filters, let’s take the same model we were working with in the previous example, and add a filter to the controller. Specifically, let’s assume a very, very poor communication system and add a 600 second delay to the control messages sent from the EV charge controller to each of the EVs.

[image: Ex. 1c message topology]

The JSON configuration file [https://github.com/GMLC-TDC/HELICS/tree/319de2b125fe5e36818f0434ac3d0a82ccc46534/examples/user_guide_examples/Example_1c/EV_Controller/Control.json] adds a new filter section that implements the filtering:

...
"filters":
 [
 {
 "name":"filterEV6",
 "sourcetarget":"EV_Controller/EV6",
 "operation":"delay",
 "properties":
 {
 "name":"delay",
 "value":600
 }
 },
 {
 "name":"filterEV5",
 "sourcetarget":"EV_Controller/EV5",
 "operation":"delay",
 "properties":
 {
 "name":"delay",
 "value":600
 }
 },
 ...
]

	name (optional) - Name of the endpoint filter

	sourcetarget(s) - Name(s) of the endpoints to which this source filter will be applied

	desttarget(s) - Name(s) of the endpoints to which this destination filter will be applied

	operation - Defines the type of filtering operation that will be applied to messages. As of v2.0, the supported types are: delay, timedelay, randomdelay, randomdrop, reroute, redirect, clone, cloning, and custom. Further details on filter types can be found here.

	properties - Each filter type has specific parameters that define how it operates. In this case, one of those parameters is the amount each message will be delayed, in seconds.

Let’s run this co-simulation [https://github.com/GMLC-TDC/HELICS/tree/319de2b125fe5e36818f0434ac3d0a82ccc46534/examples/user_guide_examples/Example_1c/] and capture the same data as last time for direct comparison: total substation load and EV charging behavior, both as a function of time.

[image: Ex. 1c total feeder load]

[image: Ex. 1c EV charge pattern]

Granted that the charge controller communication system is ridiculously poor, this example does show that communication system effects can have a significant impact on system operation. For more realistic example, the HELICS Use Case repository has an example [https://github.com/GMLC-TDC/HELICS-Use-Cases/tree/main/PNNL-Wide-Area-Control] of frequency control using real-time PMU measurements that shows the impact of imperfect communication systems.

Explicit Communication System Modeling

HELICS filters are a simple, easy step to add a touch of realism to messages in the HELICS co-simulation. The simplicity of filters, though, may be inadequate at times. Real-world communication networks have dynamic delays and data loss rates, protocol effects, and more complex topologies. Sometimes, these effects are important (or may even be the point of the co-simulation) and an explicit communication system model is required to capture these effects.

The wonderful thing about the software architecture of HELICS is that simulators that have been properly modified to allow HELICS integration will seamlessly slide into the role of filters without having to reconfigure the sending and receiving federates. The move from native HELICS filters to full-blown communication system models is invisible. This is achieved by allowing user-defined nodes in a communication system model to be designated the filter for a given endpoint. All HELICS messages coming from that endpoint enter the communication system federate at that node and message being sent to that endpoint exit the communication system federate at that node. Conceptually, the change looks something like the figure below:

[image: filters federate example]

Example 1d - EV charge controller with an ns-3 model

For this co-simulation, we’re going to use ns-3 [https://www.nsnam.org] as our communication system model. Like many other detailed simulators, ns-3 is a complicated simulator, more complicated than can easily be explained in any detail here. If you’re so interested, the ns-3 tutorial [https://www.nsnam.org/docs/release/3.29/tutorial/html/index.html] is excellent and is the best place to start to understand how it is used to model and simulate communication systems. For those not wanting to dig into that, here’s the three sentence version: ns-3 models the communication system topology as a collection of nodes and communication channels connecting them. Depending on the type of channel used, various properties (e.g. delay) can be assigned to them. On top of this network, various protocols can be assigned to build up the protocol stack with applications at the top of the stack.

When using HELICS and ns-3 together, the application that is installed is the bridge between the communication network and the rest of the HELICS federation. For each endpoint that is modeled in the communication network, a HELICS filter ns-3 application is installed at a corresponding node in the ns-3 model.

The specific ns-3 model built for this example uses the CSMA model built into ns-3 as a stand-in for a power-line carrier (PLC) communication system. Both CSMA and PLC use a bus topology with all transmitters attached to a common, shared communication channel. Each EV in the electrical network will be represented by a corresponding communication node. Older PLC implementations were known to be quite slow and we’ll abuse and stretch this fact to force the average of the communication delays through the network to match that of the previous example. We’ll also set the receiver at the substation to have a corresponding receive error rate.

First, you’ll need to install ns-3 [https://www.nsnam.org/docs/release/3.29/tutorial/html/getting-started.html#downloading-ns-3-using-git] and add the HELICS module [https://github.com/GMLC-TDC/helics-ns3]. As the README indicates, HELICS for ns-3 is an extension that is simply plopped into the standard ns-3 distribution contrib folder and the configured with a few extra switches and compiled.

EXAMPLE USING NS-3 AND HELICS IS UNDER DEVELOPMENT

 helics_cli

helics_cli

This section will describe the uses of helics_cli and how to configure it for configuring federates and launching co-simulations.

 Day in the Life of a HELICS Co-Simulation

Day in the Life of a HELICS Co-Simulation

As a co-simulation is, in some sense, a simulation of simulations, there are two levels of configuration required: the configuration of the individual federates as if they were running on their own (identifying models to be used, defining the start and stop time of the simulation, defining how the results of the simulation should be stored, etc..) and the configuration of how each federate will connect to the co-simulation and how it will interact with the other federates in the co-simulation. One of the goals of a co-simulation platform like HELICS is to make the later easier and more efficient by providing a standardized method of configuration. To provide a better understanding of why certain types of information are required during configuration and the implications of making certain choices, let’s look at how a HELICS co-simulation is constructed and run, using the example of a generic transmission and distribution powerflow.

	Co-simulation design - This isn’t really a part of the co-simulation execution but is a step often overlooked. As a user, it will be up to you to understand the assumptions, modeling techniques, and dynamics of the simulators you are going to be tying together via HELICS. Using that knowledge you’ll have to define the message topology (who is passing what information to whom) and the broker topology (which federates are connected to which brokers). The former is a matter of understanding the interactions of the system the simulators are trying to replicate and identifying the boundary conditions where they could exchange data. The later is somewhat optional (you can run a co-simulation with just a single broker) but offers an increase in performance if it is possible to identify groups of federates that interact often with each other but rarely with the rest of the federation. In such cases, assigning that group of federates their own broker will remove the congestion their messages cause with the federation as a whole.

Using our example of an integrated transmission and distribution powerflow, its easy to think of each distribution circuit acting as a load on the transmission system and the transmission system, since most (sometimes all) of the generation is directly attached to it, acting as the supplier of energy for the distribution systems. Our co-simulation design, then, defines that the transmission system will provide voltages to the distribution system (as a result of solving its powerflow) and the distribution system will provide load values to the transmission system after using the provided voltages as their substation voltage and solving their powerflow.

If you’re familiar with transmission and distribution system simulation tools, you might have already realized that there is a bit of a mismatch in how those tools operate that creates a small problem in our design: typically transmission system solvers assuming a balanced (positive-sequence only) network while distribution systems are often more comprehensive and model all three phases and support imbalanced operation. This implies that the voltages being supplied to the distribution system will always be balanced and only the positive-sequence component of the distribution system load can be used by the transmission system. When defining the values that will be sent as messages between federates, it is important that these modeling differences be taken into account.

Given the fact that only two federates are being used (the minimum number to be a co-simulation, though HELICS itself works just fine with a single federate), only a single broker is required.

[image: Transmission distribution co-simulation message topology]

[image: Transmission distribution co-simulation broker topology]

	Configure the federates - Every federate (instance of a simulator) will require configuration so that it correctly integrates with the federation. For simulators that already have HELICS support, the configuration takes the form of a JSON (or TOML) file; for simulators you might be integrating, the configuration can be done programmatically in code or via a JSON file as well. The essential information that HELICS configuration defines is:

Federate name - The unique name this federate will be known as throughout the federation. It is essential this name is unique so that HELICS messages can route properly.

Core type - The core manages interface between the federation and the federate; there are several messaging technologies supported by HELICS. All federates in the same federation must have the same core type(this requirement will be relaxed in the future).

Outputs and Inputs - Output configuration contains a listing of messages, data types, and units being sent by this federate; input configuration does the same for values being received by the federate. If supported by the simulator these values can be mapped to internal variables of the simulator from the configuration file. This is discussed in a later section on value messages in HELICS.

Endpoints - Endpoints are sending and receiving points for HELICS messages to and from message federates. They are declared and defined for each federate. Endpoints are further discussed in a later section.

Time step size - This value defines the resolution of the simulator to prevent HELICS from telling the simulator to run to a time that is has no concept of (e.g. trying to simulate the time of 1.5 seconds when the simulator has a resolution of one second). Configuration of the timing is further discussed in the a later section on timing.

Below is an example of how a very generic configuration for the transmission federate could look followed by one for the distribution federate.

 {
 "name":"transmission_federate",
 "coreType":"ZMQ"
 "publications":[
 {
 "key":"transmission_voltages",
 "type":"double",
 "unit":"V",
 }],
 "subscriptions":[
 {
 "key":"distribution_federate/distribution_loads",
 "type":"double",
 "required":true
 }],
 }

 {
 "name":"distribution_federate",
 "coreType":"ZMQ"
 "publications":[
 {
 "key":"distribution_loads",
 "type":"double",
 "unit":"W",
 }],
 "subscriptions":[
 {
 "key":"transmission_federate/transmission_voltages",
 "type":"double",
 "required":true
 }],
 }

	Launch co-simulation/Initialize federates - This will create the federates as entities recognized by the broker, set-up the communication channels for their messages to be passed, pass some initial messages and execute some preliminary code as preparation for the beginning of the co-simulation proper. The later is particularly important if the various federates need to reach a self-consistent state as an initial condition of the system.

In our example, it may be important that when the co-simulation proper begins (t = 0) that the loads and resulting voltages that are solved for across both the transmission and distribution systems are in agreement. Or, depending on the specific purpose of the co-simulation, it may be acceptable for the first few powerflows to be less precise as the federates step through time towards a more consistent state across the federation.

	Time Request - Once the initializing phase is complete, the co-simulation proper begins. Every federate, based on the system it is modeling and what information it needs to run that simulation, will request a simulation time from its core. This time request indicates the point in simulated time at which the federate knows it will have to run so it can simulate some portion of the model or behavior in the system. For example, there may be a federate simulating a building and based on the dynamics of the system, it knows the indoor temperature will not appreciably change over the next five minutes. More detailed discussion of time management is found in the section on timing.

In the case of running our integrated transmission and distribution powerflow, both federates only need to update when the other provides a new value. Effectively, the time request will determine the temporal resolution of the simulation. If loadshapes or historical data is being used by the distribution system to determine individual load co-efficients, the resolution of that data would define a lower bound for the temporal resolution. For this example, let’s assume each federate only needs to update every five minutes.

	Time Grant - Based on the time requests and grants from all the connected federates, a core will determine the next time it can grant to a federate to guarantee none of the federates will be asked to simulate a point in time that occurs in the past. That is, if the core is doing its job correctly, every federate will receive a time that is the same as or larger than the last time it was granted. HELICS does support a configuration and some other situations that allows a federate to break this rule but this is a very special situation and would require all the federates to support this jumping back in time, or accept non-causality and some randomness in execution. This and other aspects of granting time are discussed in more detail in the section on timing.

	Simulate - Once a federate has been charged with moving forward to a specific time (the granted time), the federate will execute its simulation, calculating its new state or behavior or control action to advance to that time. Prior to these calculations, it will receive any messages that have been sent to it by other federates and after simulating up to the granted time, may send out messages with new values other federates may need.

In our powerflow example, every granted time both the transmission and distribution system use the previously published values from the other federate as a new input value (boundary condition) and runs a powerflow, re-solving their system. As you may have noticed, this can easily produce an inconsistent state as each federate is using data from the last time period (say, t = 10 minutes) to solve the state for this period (t = 15 minutes). Because new values are received by the federate only once a time has been granted and the granted time is typically forward in time, the data being received will generally be out of step like this. HELICS does support a re-iteration mode that allows the granted time to be the same as the current time; this is discussed in more detail in section timing.

	Termination - Steps three through six are repeated many many times until the federation has completed its simulation. At this point, if all has gone well, the federates gracefully signal their core that they are leaving the federation. Eventually, once all the federates have left, the rest of the infrastructure disassembles itself and also terminates.

 HELICS Key Concepts

HELICS Key Concepts

Before digging into the specifics of how a HELICS co-simulation runs, there are a number of key terms and concepts that need to be clarified first:

	Simulator - A simulator is the executable that is able to perform some analysis function, often but not always, by solving specific problems to generate a time series of values. Simulators are abstract in the sense that it largely refers to the software in a non-executing state, outside of the co-simulation. We might say things like, “That simulator doesn’t model xyz appropriately for this analysis.” or “This simulator has been parallelized and runs incredibly quickly on many-core computers.” Any time we are talking about a specific instance of a simulator running a specific model you are really talking about a…

	Federate - Federates are the running instances of simulators that have been assigned specific models and/or have specific values they are providing to and receiving from other federates. For example, we can have ten distribution circuit models that we are connecting for a co-simulation. Each is run by the simulator GridLAB-D, for example, and when they are running, they become ten unique federates providing unique values to each other. A collection of federates working together in a co-simulation is called a “federation”.

	Core - The core is the software that has been embedded inside a simulator to allow it to join a HELICS federation. Generally, each federate has a single core but there are special cases where a single executable is used to represent multiple federates and all of those federates use a single core. Cores are built around specific message buses with HELICS supporting a number of different bus types. Selection of the message bus is part of the configuration process required to form the federation. See Core Types for details on the available Types of cores.

	Messages - Messages are the the information passed between federates during the execution of the co-simulation. Fundamentally, co-simulation is about message-passing. In HELICS, there are various techniques and implementations of the message-passing infrastructure that have been implemented in the core. There are also a variety of mechanisms within a co-simulation to define the nature of the data being exchanged (data type, for example) and how the data is distributed around the federation.

	Broker - The broker is a special executable distributed with HELICS; it is responsible for performing the two key tasks of a co-simulation (maintaining synchronization in the federation and facilitating message exchange, see the section on timing. Each core (which generally is synonymous with “federate”) must connect to a broker to be part of the federation. Brokers receive and distribute messages from any federates that are connected to it, routing them to the appropriate location. HELICS also supports a hierarchy of brokers, allowing brokers to pass messages between each other to connect federates associated with different brokers and thus maintain the integrity of the federation. The broker at the top of the hierarchy is called the “root broker” and it is the message router of last resort.

Potential HELICS Co-simulation Architectures

Given the definitions of the entities above, there are several co-simulation architectures that can be constructed where the relationships between this entities can vary.

Everyday Co-simulation

The figure below shows the most common architecture for HELICS co-simulation. Each core has only one federate as an integrated executable, all executables reside on the same computer and are connected to the same broker. This architecture is particularly common for small federates and/or co-simulations under development.
[image: HELICS Architecture 1]

Multi-threading

The architecture below shows a much less common scenario where more than one federate is associated with a single core. For most simulators that have already been integrated with HELICS this architecture would generally not be used. For simulators that are multi-threaded by nature, HELICS can be configured this way to facilitate message passing between threads. For a co-simulation that exists entirely within a single executable, this architecture will provide the highest performance. For example, of a large number of small controllers are written as a single, multi-threaded application (perhaps all the thermostats in an commercial building are being managed by a centralized controller), particularly where there is communication between the threads, using a single core inside a single multi-threaded application (with essentially one thread per federate) will provide the highest level of performance.
[image: HELICS Architecture 2]

Computationally Heavy Federates

For co-simulations on limited hardware where a federate requires significant computational resources and high performance is important, it may be necessary to spread the federates out across a number of compute nodes to give each federate the resources it needs. All federates are still connected to a common broker and it would be required that the computers have a valid network connection so all federates can communicate with said broker. In this case, it may or may not be necessary to place the broker on its own compute node, based on the degree of competition for resources on its current compute node.
[image: HELICS Architecture 3]

Multi-Broker

Alternatively, it would be possible to locate a broker on each computer and create a root broker on a third node. This kind of architecture could help if higher performance is needed and the federates on each computer primarily interact with each other and very little with the federates on the other computer. As compared to the previous architecture, adding the extra layer of brokers would keep local messages on the same compute node and reduce congestion on the root broker.
[image: HELICS Architecture 4]

 Logging

Logging

Logging in HELICS is normally handled through an independent thread. The thread prints message to the console and or to a file.

Federate Logging

Most of the time the log for a federate is the same as for its core. This is managed through a few properties in the FederateInfo structure which can also be directly specified through the property functions.

	helics_property_int_log_level General logging level applicable to both file and console logs

	helics_property_int_file_log_level Level to log to the file

	helics_property_int_console_log_level Level to log to the console

These properties can be set using the API interface functions

helicsFederateInfoSetIntegerProperty(fi,helics_property_int_log_level, helics_log_level_data,&err);

h.helicsFederateInfoSetIntegerProperty(fi,h.helics_property_int_log_level, h.helics_log_level_data)

NOTE: logging level properties set in a federateInfo will apply to a core as well if it is the first federate registered in the core. After registration log level properties must be set separately for the core and federate.

There are several levels used inside HELICS for logging

	helics_log_level_no_print Don’t print anything

	helics_log_level_error Error and faults from within HELICS

	helics_log_level_warning Warning messages of things that might be incorrect or unusual

	helics_log_level_summary Summary messages on startup and shutdown. The Broker will also generate a summary with the number of federates connected and a few other items of information

	helics_log_level_connections Log a message for each connection event (federate connection/disconnection)

	helics_log_level_interfaces Log messages when interfaces, such as endpoints, publications, and filters are created

	helics_log_level_timing Log messages related to timing information such as mode transition and time advancement

	helics_log_level_data Log messages related to data passage and information being sent or received

	helics_log_level_trace Log all internal message being sent

NOTE: these levels currently correspond to (-1 through 7) but this may change in future major version numbers to allow more fine grained control

timing, data and trace log levels can generate a large number of messages and should primarily be used for debugging. trace will produce a very large number of messages most of which deal with internal communications and is primarily for debugging message timing in HELICS.

Lines will often look like

echo1 (131072) (0)::Time mismatch detected granted time >requested time 5.5 vs 5.0

or

commMessage||26516-enRPa-PzaBB-ZG190-lj14t:got new broker information

which includes a name and internal id code for the federate then a time in parenthesis and the message. if it is a warning or error there will be an indicator before the object name. Names for brokers or cores are often auto generated and look like 26516-enRPa-PzaBB-ZG190-lj14t which is essentially a random string with a thread id in the front. In this case the commMessage indicates it came from one of the communication modules

Configuration files

The log levels can be controlled through the federate configuration files as well

{
 //example json configuration file for a value federate all arguments are optional
 "name": "valueFed", // the name of the federate
 "coretype": "zmq", //the type of the core "test","zmq","udp","ipc","tcp","mpi"
 "corename": "core1", //this matters most for ipc and test cores, can be empty
 "coreinit": "--autobroker", // the initialization string for the core in the form of a command line arguments
 "period": 1.0, //the period with which federate may return time
 "log_level": 1 //specify the log level
}

toml files are similar. It is also possible to specify at the core level

{
 //example json configuration file for a value federate all arguments are optional
 "name": "valueFed", // the name of the federate
 "coretype": "zmq", //the type of the core "test","zmq","udp","ipc","tcp","mpi"
 "corename": "core1", //this matters most for ipc and test cores, can be empty
 "coreinit": "--autobroker --log_level=trace", // the initialization string for the core in the form of a command line arguments
 "period": 1.0 //the period with which federate may return time
}

log level string representation

when specifying log levels through the command line or through config files it is also possible to use a string representation

	“no_print” :no log messages

	“error” : only error message

	“warning” : errors + warning messages

	“summary” : some additional summary messages (the default)

	“connections” :summary + connection messages for federates connecting and disconnecting

	“interfaces” : connections + interface creation messages

	“timing” : interfaces+ some timing messages

	“debug” : same as data

	“data” : timing + data transfer logging

	“trace” : all internal messages

{
 //example json configuration file for a value federate all arguments are optional
 "name": "valueFed", // the name of the federate
 "coretype": "zmq", //the type of the core "test","zmq","udp","ipc","tcp","mpi"
 "corename": "core1", //this matters most for ipc and test cores, can be empty
 "coreinit": "--autobroker", // the initialization string for the core in the form of a command line arguments
 "period": 1.0, //the period with which federate may return time
 "log_level": "connections" //specify the log level as a string
}

Log Files

It is possible to specify a log file to use on a core.
This can be specified through the coreinit string --logfile logfile.txt

or on a core object

helicsCoreSetLogFile(core,"logfile.txt",&err);

A similar function is available for a broker. The Federate version will set the logFile on the connected core.

helicsFederateSetLogFile(fed,"logfile.txt",&err);

A federate also can set a logging callback so log messages can be processed in whatever fashion is desired by a federate. In C++ the method on a federate is

 void
setLoggingCallback (const std::function<void(int, const std::string &, const std::string &)> &logFunction);

void
helicsFederateSetLoggingCallback (helics_federate fed,
 void (*logger) (int loglevel, const char *identifier, const char *message, void *userData),
 void *userdata,
 helics_error *err);

These functions are not available in the language API’s yet

The callback take 3 parameters about a message and in the case of C callbacks a pointer to user data.

	loglevel an integer code describing the level of the message as described above.

	identifier a string with the name of the object generating the message (may be empty)

	message the actual message to log

User Log Messages

A set of functions are available for individual federates to generate log messages

void logMessage (int level, const std::string &message) const;
void logErrorMessage (const std::string &message) const;
void logWarningMessage (const std::string &message) const;
void logInfoMessage (const std::string &message) const;
void logDebugMessage (const std::string &message) const;

These will log a message at the appropriate level or at a user specified level.

 Message Federates

Message Federates

As previously discussed in the federate introduction, message federates are used to create HELICS messages that model information transfers (versus physical values) moving between federates. Measurement and control signals are typical applications for these types of federates.

Unlike HELICS values which are persistent (meaning they are continuously available throughout the co-simulation), HELICS messages are only readable once when collected from an endpoint. Once that collection is made the message only exists within the memory of the collecting message federate. If another message federate needs the information, a new message must be created and sent to the appropriate endpoint. Filters can be created to clone messages as well if that behavior is desired.

Message Federate Endpoints

As previously discussed, message federates interact with the federation by defining an “endpoint” that acts as their address to send and receive messages. Message federates are typically sending and receiving measurements, control signals, commands, and other signal data with HELICS acting as a perfect communication system (infinite bandwidth, virtually no latency, guaranteed delivery).

In fact, as you’ll see in a later section, it is possible to create more realistic communication-system effects natively in HELICS (as well as use a full-blown communication simulator like ns-3 [https://www.nsnam.org] to do the same). This is relevant now, though, because it influences how the endpoints are created and, as a consequence, how the simulator handles messages. You could, for example, have a system with three federates communicating with each other: a remote voltage sensor, a voltage controller, and a voltage regulation actuator (we’ll pretend for the case of this example that the last two are physically separated though they often aren’t). In this case, you could imagine that the voltage sensor only sends messages to the voltage controller and the voltage controller only sends messages to the voltage regulation actuator. That is, those two paths between the three entities are distinct, have no interaction, and have unique properties (though they may not be modeled). Given this, referring to the figure below, the voltage sensor could have one endpoint (“Endpoint 1”) to send the voltage signal, the voltage regulator could receive the measurement at one endpoint (“Endpoint 2”) and send the control signal on another (“Endpoint 3”), and the voltage regulation actuator would receive the control signal on its own endpoint (“Endpoint 4”).

[image: voltage regulation message federates]

The federate code handling these messages can be relatively simple because the data coming in or going out of each endpoint is unique. The voltage controller always receives (and only receives) the voltage measurement at one endpoint and similarly only sends the control signal on another.

Consider a counter-example: automated meter-reading (AMI) using a wireless network that connects all meters in a distribution system to a data-aggregator in the substation (where, presumably, the data travels over a dedicated wired connection to a control room). All meters will have a single endpoint over which they will send their data but what about the receiver? The co-simulation could be designed with the data-aggregator having a unique endpoint for each meter but this implies come kind of dedicated communication channel for each meter; this is not the case with wireless communication. Instead, it is probably better to create a single endpoint representing the wireless connection the data aggregator has with the AMI network. In this case, messages from any of the meters in the system will be flowing through the same endpoint and to differentiate the messages from each other, the federate will have to be written to examine the metadata with the message to determine its original source.

[image: ami message federates]

Interactions Between Messages and Values

Though it is not possible to have a HELICS message show up at a value interface, the converse is possible; message_federates can subscribe to HELICS values. Every time a value federate publishes a new value to the federation, if a message federate has subscribed to that message HELICS will generate a new HELICS message and send it directly to the destination endpoint. These messages are queued and not overwritten (unlike in HELICS values) which means when a message federate is synchronized it may have multiple messages from the same source to manage.

This feature offers the convenience of allowing a message federate to receive messages from pure value federates that have no endpoints defined. This is particularly useful for simulators that do not support endpoints but are required to provide measurement signals controllers. Implemented in this way, though, it is not possible to later implement a full-blown communication simulator that these values-turned-messages can traverse. Such co-simulation architectures in HELICS require the existence of both a sending and receiving endpoint; this feature very explicitly by-passes the need for a sending endpoint.

Message Federate Configuration in JSON

Once the message topology considering endpoints has been determined, the definitions of these endpoints in the JSON file is straight-forward. Here’s what it could look like for the voltage regulator example from above.

{
 ...
 "endpoints" : [
 {
 "name" : "voltage_sensor",
 "global" : true,
 "destination" : "voltage_controller",
 "info" : ""
 },
 {
 "name" : "voltage_controller_1",
 "global" : true,
 "info" : ""
 },
 {
 "name" : "voltage_controller_2",
 "global" : true,
 "destination" : "voltage_actuator",
 "info" : ""
 },
 {
 "name" : "voltage_actuator",
 "global" : true,
 "info" : ""
 }
 ...
]
}

	name - Analogous to key in value federates, this is the unique identifier of the endpoint in the federation and has the same interaction with global as the value federates do.

	global - Just as in value federates, global allows for the identifier of the endpoint to be declared unique for the entire federation.

	destination - For endpoints that send all outgoing messages to only a single endpoint, destination allows the endpoint to be specified in the JSON configuration. This allows for a more modular implementation of the federate since this parameter is externally defined rather than being hardcoded in the federate itself.

	info - Just as in the value federate, the string in this field is ignored by HELICS and can be used by the federate for internal configuration purposes.

There are a few other configuration parameters that are applicable if the endpoint is interacting with a HELICS value message.

	knownSubscription - The string in this field specifies the key for a HELICS value message that the message federate would like to receive at the specified endpoint. HELICS will generate a message and send it to this endpoint whenever the originating value federate updates to value.

	type and units - Just as in HELICS values, messages that come from value federates have associated data types and units. As in value federates, HELICS can use the specified type and units field to perform appropriate conversions. (As of v2.0, unit conversion is not supported.)

Example 1b - Distribution system EV charge controller

To demonstrate how a message federate interacts with the federation, let’s take the previous example and add two things to it: electric vehicle (EV) loads in the distribution system, and a centralized EV charge control manager.

Keeping in mind that this a model for demonstration purposes (which is to say, don’t take this too seriously), let’s make the following assumptions and definitions to simplify the behavior of the EV charge controller:

	All EVs are very large (200kW; level 2 charging is rated up to 20kW)

	All EVs have infinite battery capacity

	All EVs will be at home all day, desiring to charge all day if they can.

	All EVs charge at the same power level.

	The EV charge controller has direct control over the charging of all EVs in the distribution system. It can tell them when to turn off and on at will.

	The EV charge controller has the responsibility to limit the total load of the distribution system to a specified level to prevent overloading on the substation transformer.

	The EV will turn off some EV charging when the total distribution load exceeds the transformer limit by a certain percentage and will turn some EVs back on when below the limit by a certain percentage.

	Nothing is fair about how the charge controller chooses which EVs to charge and which to disconnect.

The message topology (including the endpoints) and the not very interesting broker topology are shown below.

[image: Ex. 1b message topology]

[image: Ex. 1b message topology]

Taking these assumptions and specifications, it is not too difficult to write a simple charge controller as a Python script. And just by opening the JSON configuration file [https://github.com/GMLC-TDC/HELICS/tree/319de2b125fe5e36818f0434ac3d0a82ccc46534/examples/user_guide_examples/Example_1b/EV_Controller/Control.json] we can learn important details about how the controller works.

{
 "name": "EV_Controller",
 "loglevel": 5,
 "coreType": "zmq",
 "timeDelta": 1.0,
 "uninterruptible": true,

 "endpoints":[
 {
 "name": "EV_Controller/EV6",
 "destination": "IEEE_123_feeder_0/EV6",
 "type": "genmessage",
 "global": true

 },
 {
 "name": "EV_Controller/EV5",
 "destination": "IEEE_123_feeder_0/EV5",
 "type": "genmessage",
 "global": true
 },
 ...
],
 "subscriptions":[
 {
 "key": "IEEE_123_feeder_0/totalLoad",
 "type": "complex",
 "required": true
 },
 {
 "key": "IEEE_123_feeder_0/charge_EV6",
 "type": "complex",
 "required": true
 },
 {
 "key": "IEEE_123_feeder_0/charge_EV5",
 "type": "complex",
 "required": true
 },
 ...
]
}

The first thing to note is the the EV controller has been written as a combination federate, having both endpoints for receiving/sending messages and subscriptions to HELICS values. The HELICS values that the controller has subscribed to give the controller access to both the total load of the feeder (totalLoad, presumably) as well as the charging power for each of the individual EVs being controlled (six in total).

Looking at the GridLAB-D JSON configuration file [https://github.com/GMLC-TDC/HELICS/tree/319de2b125fe5e36818f0434ac3d0a82ccc46534/examples/user_guide_examples/Example_1b/Distribution/IEEE_123_feeder_0.json] confirms this:

{
 "name" : "DistributionSim",
 "loglevel": 5,
 "coreType": "zmq",
 "period" : 1.0,
 "publications" : [
 {
 "global" : true,
 "key" : "IEEE_123_feeder_0/totalLoad",
 "type" : "complex",
 "unit" : "VA",
 "info" : "{
 \"object\" : \"network_node\",
 \"property\" : \"distribution_load\"
 }"
 },
 {
 "global" : true,
 "key" : "IEEE_123_feeder_0/charge_EV6",
 "type" : "complex",
 "unit" : "VA",
 "info" : "{
 \"object\" : \"EV6\",
 \"property\" : \"constant_power_A\"
 }"
 },
 {
 "global" : true,
 "key" : "IEEE_123_feeder_0/charge_EV5",
 "type" : "complex",
 "unit" : "VA",
 "info" : "{
 \"object\" : \"EV5\",
 \"property\" : \"constant_power_B\"
 }"
 },
 ...
],
 "endpoints" : [
 {
 "global" : true,
 "name" : "IEEE_123_feeder_0/EV6",
 "type" : "complex",
 "info" : "{
 \"object\" : \"EV6\",
 \"property\" : \"constant_power_A\"
 }"
 },
 {
 "global" : true,
 "name" : "IEEE_123_feeder_0/EV5",
 "type" : "complex",
 "info" : "{
 \"object\" : \"EV5\",
 \"property\" : \"constant_power_B\"
 }"
 },
 ...
]
}

GridLAB-D is publishing out the total load on the feeder as well as the individual EV charging loads. It also has endpoints set up for each of the EV chargers to receive messages from the controller. Based on the strings in the info field it appears that the received messages are used to define the EV charge power.

Running the example [https://github.com/GMLC-TDC/HELICS/tree/319de2b125fe5e36818f0434ac3d0a82ccc46534/examples/user_guide_examples/Example_1b/] and looking at the results, as the total load on the feeder exceeded the pre-defined maximum loading of the feeder (red line in the graph), the EV controller disconnected an additional EV load. Conversely, as the load dipped to the lower limit (green line), the controller reconnected the EV load. Looking at a graph of the EV charge power for each EV shows the timing of the EV charging for each load.

[image: Ex. 1b total feeder load]

[image: Ex. 1b EV charge pattern]

Given the relatively dramatic changes in load, you might expect the voltage on the transmission system to be impacted. You would be right:

[image: Ex. 1b EV charge pattern]

 Multi Source Inputs

Multi Source Inputs

On occasion it is useful to allow multiple source to feed an input. Creating an N to 1 relationship for publications to inputs. This could occur on situations like a summing junction, or a switch that can be turned on or off from multiple other federates, or just to gather an input vector. While technically supported prior to 2.5.1 [https://github.com/GMLC-TDC/HELICS/releases/tag/v2.5.1] the control and access to this feature of HELICS was not well though through or straightforward. The developments in 2.5.1 made it possible to specify a mathematical reduce operation on multiple inputs to allow access to them as a single value or vector.

Mechanics of multi-input handling

Internally HELICS manages input data in a queue when a federate is granted time the values are scanned and placed in a holding location by source. In many cases there is likely only to be a single source. But if multiple publications link to a single source the results are placed in a vector. The order in that vector is by order of linking. If a single publication value is retrieved from the Input the newest value is given as if it were a single source. In case of ties the publication that connected first is given priority.

Controlling the behavior

A few flags are available to control or modify this behavior including limiting the number of connections and adjusting the priority of the different inputs sources. The behavior of inputs is controlled via flags using setOption methods.

The number of connections

There are several flags and handle options which can control this for Inputs

	helics_handle_option_single_connection_only : If set to true specified that an input may have only 1 connection

	helics_handle_option_multiple_connections_allowed: if set to true then multiple connections are allowed

	helics_handle_option_connections: takes an integer number of connections specifying that an input must have N number of connections or an error will be generated.

Controlling priority

The default priority of the inputs if they are published at the same time and only a single value is retrieved is in order of connection. This may not be desired so a few handle options are available to manipulate it.

	helics_handle_option_input_priority_location takes a value specifying the input source index to give priority to. If given multiple times it establishes an ordering of the inputs. So in the case of timing ties they can be ordered. For example if the option is called first with a given value of 2 then again with 1 and an input has 3 sources. If they all tie the source with index 1 will have highest priority, and in the case of a tie between sources 0 and 2, source 2 will have priority.

	helics_handle_option_clear_priority_list will erase the existing priority list.

Reduction operations on multiple inputs

The priority of the inputs is only applicable if the default operation to retrieve a single value is used. The option
helics_handle_option_multi_input_handling_method can be used to specify a reduction operation on all the inputs to process them in some fashion a number of operations are available.

The handling method specifies how the reduction operation occurs the value can then retrieved normally via any of the getValue methods on an input.

Configuration

Multi Input handling can be configured through the programming API or through a file based configuration.

auto& in1 = vFed1->registerInput<double>("");
 in1.addTarget("pub1");
 in1.addTarget("pub2");
 in1.addTarget("pub3");
 in1.setOption(helics::defs::options::multi_input_handling_method,
 helics::multi_input_handling_method::average);

/*errors are ignored here*/
helics_input in1 = helicsFederateRegisterInput("",helics_data_type_double,"",nullptr);
helicsInputAddTarget(in1,"pub1",nullptr);
helicsInputAddTarget(in1,"pub2",nullptr);
helicsInputAddTarget(in1,"pub2",nullptr);
helicsInputSetOption(in1,helics_handle_option_multi_input_handling_method,helics_multi_input_average_operation, nullptr);

in1 = h.helicsFederateRegisterInput("",h.helics_data_type_double,"");
h.helicsInputAddTarget(in1,"pub1");
h.helicsInputAddTarget(in1,"pub2");
h.helicsInputAddTarget(in1,"pub2");
h.helicsInputSetOption(in1,helics_handle_option_multi_input_handling_method,helics_multi_input_average_operation);

The handling can also be configured in the configuration file for the federate

inputs=[
{key="ipt2", type="double", targets=["pub1","pub2"], connections=2, multi_input_handling_method="average"}
]

"inputs": [
 {
 "key": "ipt2",
 "type": "double",
 "connections":2,
 "multi_input_handling_method":"average",
 "targets": ["pub1","pub2"]
 }
]

The priority of the inputs in most cases determined by the order of adding the publications as a target. This is not strictly guaranteed to occur but is a general rule and only applies in the default case, and possibly the diff operation.

 Multi Broker

Multi Broker

Starting in HELICS 2.5 there is a Multi Broker type that allows connection with multiple communication types simultaneously. The multibroker allows an unlimited number of communication operations to interact.

Starting a multiBroker

A multibroker can be started as BrokerApp or a helics_broker. For the HELICS Broker the configuration must given as a file since each of the core types linked must be configured independently. Using the helics_broker the startup commands would look something like

helics_broker --type multi --config=helics_mb_config.json --name=broker1

A couple example configurations follow.

{
 "master": {
 "type": "test"
 },
 "comms": [
 {
 "type": "zmq",
 "interfaceport": 23410
 },
 {
 "type": "zmq",
 "interfaceport": 23700
 }
]
}

The primary communication pathway can be specified in a master object or on the root of the configuration file.

{
 "type": "test",
 "comms": [
 {
 "type": "zmq"
 },
 {
 "type": "tcp"
 }
]
}

Master comm information can also be given through the command line. The master comm is the only on in which higher level broker information may be specified. Any broker related specification in the comms sections will result in an error. If the MultiBroker is intended to be a root broker then no master section is required. Multiple network communication pathways of the same type are allowed assuming they use different ports.

Programmatically multibrokers can also be started using the BrokerApp and giving it the type helics::core_type::MULTI for arguments to the multibroker the type of the master comm can be specified on the command line arguments as well.

Limitations

	Using TCPSS comms in the multibroker does not currently support outgoing connections like a full TCPSS broker would. This will likely be fixed in upcoming releases.

	Configuration files must currently be in JSON, in a few limited cases TOML files may work, but configuration of multiple comms in a toml file will not work. This will also likely be fixed in upcoming releases.

	General support for multibrokers is not provided in the webServer due to limitations on the configuration files. Some mechanism for this will be allowed in a future release.

 Terminating HELICS

Terminating HELICS

If executing from a C or C++ based program. Ctrl-C should do the right thing, and terminate the local program. If the co-simulation is running across multiple machines then the remaining programs won’t terminate properly and will either timeout or if that was disabled potentially deadlock.

Signal handler facilities

The C shared library has some facilities to enable a signal handler.

/** load a signal handler that handles Ctrl-C (SIGINT) and shuts down the library*/
void helicsLoadSignalHandler();

/** clear HELICS based signal Handlers*/
void helicsClearSignalHandler();

This function will insert a signal handler that generates a global error on known objects and waits a certain amount time, clears the print buffer, and terminates.

NOTE : the signal handlers use unsafe operations, so there is no guarantee they will work, or that they will work as expected. Testing indicates they work in most situations and improve operations where needed but it is not 100% reliable or safe code. They make use of atomic variables, mutexes, and other constructs that are not technically safe in signal handlers. The primary use case is program termination so the effects are minimized and they usually work, but the unsafe nature of them should be kept in mind.

/** load a custom signal handler to execute prior to the abort signal handler
@details This function is not 100% reliable it will most likely work but uses some functions and
techniques that are not 100% guaranteed to work in a signal handler
and in worst case it could deadlock. That is somewhat unlikely given usage patterns
but it is possible*/
void helicsLoadSignalHandlerCallback(helics_bool (*handler)(int));

It is also possible to insert a custom callback into the signal handler chain. Again this is not 100% reliable. But is useful for some language API’s that do other things to signals. This allows for inserting a custom operation that does some other cleanup. The callback has a helics_boolean return value. If the value is set to helics_true(or any positive value) then the normal Signal handler is called which aborts ongoing federations and exits. If it is set to helics_false then the default callback is not executed.

Signal handlers in C++

Facilities for signal handling in C++ were not put in place since it is easy enough for a user to place their own handlers which would likely do a better job than any built in ones, so a default one was not put in place at present though may be at a later time.

Generating an error

A global error generated anywhere in a federation will terminate the co-simulation.

/**
 * generate a global error through a broker this will terminate the federation
 *
 * @param broker The broker to set the time barrier for.
 * @param errorCode the error code to associate with the global error
 * @param errorString an error message to associate with the error
 * @param[in,out] err An error object that will contain an error code and string if any error occurred during the execution of the function.
 */
void helicsBrokerGlobalError(helics_broker broker, int errorCode, const char *errorString, helics_error* err);

void helicsCoreGlobalError(helics_core core, int errorCode, const char* errorString, helics_error* err);

/**
 * Generate a global error from a federate.
 *
 * @details A global error halts the co-simulation completely.
 *
 * @param fed The federate to create an error in.
 * @param error_code The integer code for the error.
 * @param error_string A string describing the error.
 */
HELICS_EXPORT void helicsFederateGlobalError(helics_federate fed, int error_code, const char* error_string);

Corresponding functions are available in the C++ API as well. Any global error will cause a termination of the co-simulation.

Some modifying flags

Setting the helics_terminate_on_error flag to true will escalate any local error into a global one and terminate the co-simulation. This includes any mismatched configuration or other local issues.

Comments

Generally it isn’t a wise idea to just terminate the co-simulation without letting everyone else know. If you control everything it probably works fine but as co-simulations get larger more care needs to be taken to prevent zombie processes and hung federates and brokers. Which can cause issues on the next one. This is an evolving area of how best to handle terminating large co-simulations in abnormal conditions and hopefully the best practices will make it easier for users.

 Queries

Queries

Queries are asynchronous means within HELICS of asking for and receiving information from other federate components.
Brokers, Federates, and Cores all have query functions. Federates are also able to define a callback for answering custom queries.

The general function appears like

std::string query(const std::string& target, const std::string& queryStr,
 helics_sequencing_mode mode = helics_sequencing_mode_fast)

Targets

A target is specified, and can be one of the following. A federate named one of the key words is valid for the federation, but cannot be queried using the name.

	target

	Description

	broker

	The first broker encountered in the hierarchy from the caller

	root, federation, rootbroker

	The root broker of the federation

	global

	Retrieve the data associated with a global variable

	parent

	The parent of the caller

	core

	The core of a federation, this is not a valid target if called from a broker

	federate

	A query to the local federate or the first federate of a core

	<object name>

	any named object in the federation can also be queried, brokers, cores, and federates

Query String

The queryStr is a specific data to request, there are a number of different things that can be queried from the system.
Unrecognized queries or targets return #invalid
Answers to queries can be

	“true”/”false” [T/F]

	a single string "answer" [string]

	a vector of strings delimited by ';' [answer1;answer2;answer3] [sv]

	a JSON string [JSON]

sequencing_mode

As of HELICS 2.7.0 Queries have an optional parameter to describe a sequencing mode. There are currently two modes, helics_sequencing_mode_fast which travels along priority channels and is identical to previous versions in which all queries traveled along those channels. The other mode is helics_sequencing_mode_ordered which travels along lower priority channels but is ordered with all other messages in the system. This can be useful in some situations where you want previous messages to be acknowledged as part of the federation before the query is run. The global_flush query is forced to run in ordered mode at least until after it gets to the specified target.

Federate Queries

The following queries are defined for federates. Federates may specify a callback function which allows arbitrary user defined Queries. The queries defined here are available inside of HELICS.

The global_time_debugging and global_flush queries are also acknowledged by federates but it is not usually recommended to run those queries on a particular federate as they are more useful at higher levels. See the Core and Broker queries for more description of them.

Local Federate Queries

The following queries are defined for federates but can only be queried on the local federate. Federates may specify a callback function which allows arbitrary user defined Queries. The queries defined here are available inside of HELICS.

	queryString

	Description

	updated_input_indices

	vector of number of the inputs that have been updated [sv]

	updated_input_names

	names or targets of inputs that have been updated [sv]

	updates

	values of all currently updated inputs [JSON]

	values

	current values of all inputs [JSON]

	time

	the current granted time [string]

Other strings may be defined for specific federates.

Core queries

The following queries will be answered by a core.

The version and version_all queries are valid but are not usually queried directly, but instead the same query is used on a broker and this query in the core is used as a building block.

Broker Queries

The Following queries will be answered by a broker.

	queryString

	Description

	name

	the identifier of the broker [string]

	address

	the network address of the broker [string]

	isinit

	If the broker has entered init mode [T/F]

	isconnected

	If the broker is connected to the network [T/F]

	publications

	current publications known to a broker [sv]

	endpoints

	current endpoints known to a broker [sv]

	federates

	current federates under the brokers hierarchy [sv]

	brokers

	current cores/brokers connected to a broker [sv]

	dependson

	list of the objects this broker depends on [sv]

	dependencies

	structure containing dependency information for the broker [JSON]

	dependents

	list of dependent objects [sv]

	counts

	a simple count of the number of brokers, federates, and handles [JSON]

	current_state

	a structure with the current known status of the brokers and federates [JSON]

	global_state

	a structure with the current state all system components [JSON]

	status

	a structure with the current known status (true if connected) of the broker [JSON]

	current_time

	if a time is computed locally that time sequence is returned, otherwise #na [string]

	global_time

	get a structure with the current time status of all the federates/cores [JSON]

	federate_map

	a Hierarchical map of the federates contained in a broker [JSON]

	dependency_graph

	a representation of the dependencies in the broker and all contained members [JSON]

	data_flow_graph

	a representation of the data connections from all interfaces in a federation [JSON]

	queries

	list of dependent objects [sv]

	version_all

	data structure with the version strings of all broker components [JSON]

	version

	the version string for the helics library [string]

	counter

	A single number with a code, changes indicate federation changes [string]

	global_time_debugging

	return detailed time debugging state [JSON]

	global_flush

	a query that just flushes the current system and returns the id’s [JSON]

	global_status

	an aggregate query that returns a combo of global_time and current_state [JSON]

federate_map, dependency_graph, global_time,global_state,global_time_debugging, and data_flow_graph when called with the root broker as a target will generate a JSON string containing the entire structure of the federation. This can take some time to assemble since all members must be queried. global_flush will also force the entire structure along the ordered path which can be quite a bit slower.

Usage Notes

Queries that must traverse the network travel along priority paths unless specified otherwise with a sequencing mode. The calls are blocking, but they do not wait for time advancement from any federate and take priority over regular communication.

The difference between current_state and global_state is that current_state is generated by information contained in the component so doesn’t generate secondary queries of other components. Whereas global_state will reach out to the other components to get up to date information on the state.

Application API

There are two basic calls in the application API as part of a federate object
In addition to the call described above a second version without the target

std::string query(const std::string& queryStr)

make the query of the current federate.
an asynchronous version is also available.

query_id_t queryAsync(const std::string& target, const std::string& queryStr)

This call returns a query_id_t that can be use in queryComplete and isQueryComplet functions.

In the header <helics\queryFunctions.hpp> a few helper functions are defined to vectorize query results and some utility functions to wait for a federate to enter init, or wait for a federate to join the federation.

C-api and interface API’s

Queries in the C api work similarly but the mechanics are different.
The basic operation is to create a query using helicsQueryCreate(target,query)

This function returns a query object that can be used in one of the execute functions to generate results.
It can be called asynchronously on a federate. The target field may be empty if the query is intended to be used on a local federate, in which case the target is assumed to be the federate itself.
A query must be freed after use.
The interface api’s (python, matlab, octave, Java, etc) will work similarly.

Timeouts

As long as timeouts are enabled in the library itself, queries have a timeout system so they don’t block forever if a federate fails or some other condition occurs. The current default is 15 seconds. It can be changed by using the command line option --querytimeout on cores or brokers (or in --coreinitstring on cores). In a later version an ability to set this and some other timeout values through properties will likely be added (HELICS 3.1). If the query times out a value of #timeout will be returned in the string.

 Webserver

Webserver

See Webserver

 Integrating a Simulator with HELICS

Integrating a Simulator with HELICS

At some point, maybe from the very beginning of your time with HELICS co-simulation, you’ll have an interest or need to include a simulator in your co-simulation that HELICS doesn’t support. Maybe it’s an existing open-source simulator, maybe it’s commercial software, maybe it’s a small controller simulator you’d like to test in an existing model. HELICS has been designed to make it as easy as possible to integrate a new simulator. Before writing code, though, it is important to more specifically define the task.

Simulator Integration Clarifying Questions

	What is the nature of the code-base being integrated? Is this open-source code that can be fully modified? Is it a simulator, perhaps commercial, that provides an API that will be used? How much control do you, the integrator, have in modifying the behavior of the simulator?

	What programming language will be used? - HELICS has bindings for a number of languages and the one that is best to use may or may not be obvious. If you’re integration of the simulator will be through the API of the existing simulator, then you’ll likely be writing a standalone executable that wraps that API. You may be constrained on the choice of languages based on the method of interaction with that API. If the API is accessed through a network socket then you likely have a lot of freedom in language choice. If the API is a library that you call from within wrapper, you will likely be best of using the language of that library.

If you’re writing your own simulator then you have a lot more freedom and the language you use may come down to personal preference and/or performance requirements of the federate.

The languages currently supported by HELICS are:

	C++

	C

	Python (2 and 3)

	Java

	MATLAB

	Octave

	C# (somewhat limited as of yet)

	Julia

	Nim

	What is the simulators concept of time? - Understanding how the simulator natively moves through time is essential when determining how time requests will need to be made. Does the simulator have a fixed time-step? Is it user-definable? Does the simulator have any concept of time or is it event-based?

	What is the nature of the values it will send to and receive from the rest of the federation? Depending on the nature of the simulator, this may or may not be specifically definable but a general understanding of how this simulator will be used in a co-simulation should be clear. As a stand-alone simulator, what are its inputs and outputs? What are its assumed or provided boundary conditions? What kinds of values will it be providing to the rest of the federation?

The Essential APIs

With the answers to those clarifying questions in mind, let’s look at the normal execution process used by a HELICS federate when co-simulating and the associated APIs for each of the languages. Many of these APIs are wrappers for one or more lower level APIs; additionally, there are many more detailed APIs that won’t be discussed at all. If, as the simulator integrator, you have needs beyond what is discussed here you’ll have to dig into the developer documentation on the APIs to get the details you need.

For the remainder of this section of the guide, we’ll assume the use of a Python binding and thus, at the top of the Python script (after installing the Python HELICS module), you’ll have to do something like this:

import helics as h

Broker Creation

Though not technically a pat of integrating a simulator its important to remember that as a part of running a co-simulation, a broker will need to be created. This can be done as part of what an existing federate does, as a part of a stand-alone broker-creation federate, or with helics_cli. Broker creation is done with just a single API call:

broker = h.helicsCreateBroker("zmq", "main_broker", "--federates 2")

The Doxygen on this function shows that the first argument defines the core, the second the name of the broker, and the third is an initialization string which in this case, only specifies the number of federates in the federation.

HELICS Core Creation

Given one or more existing simulators that need to be integrated, at some point in the code it will be necessary to create a federate instance of that simulator. Doing so established the message-passing and synchronization infrastructure that is required to be part of a HELICS co-simulation.

The easiest way to do this is using a specific API that reads in a user-defined JSON file to create the federate. These are the configuration files that we have been examining in part or whole throughout the this guide and are used in the examples. By placing all the configuration information in the JSON file, it allows maximum modularity and flexibility of the simulator being integrated. Using the JSON file allows all future users of the simulator to modify and customize the connection between that simulator and any given HELICS federation without having to modify the source code.

There are ways to programmatically (“hard-code”) the configuration of the federate and for small, one-off simulators (like an EV charge controller, for example), doing so may be the fastest way to get the HELICS co-simulation up and running. Then again, how often does one-off code stay one-off….

The JSON configuration file, as discussed earlier in this guide, contains information both about the federate in general (which core type is being used, what its time-step is) as well as the information it will be providing to the federate and receiving from it. HELICS has a single API command to read in that file and create the federate:

fed = h.helicsCreateValueFederateFromConfig('Control.json')

(There are equivalent methods for helicsCreateMessageFederateFromConfig() and h.helicsCreateCombinationFederateFromConfig()). This function creates the federate object fed based on the path to the JSON configuration file.

Value/Endpoint Configuration

With all the information provided in the configuration JSON, HELICS is fully aware of what your custom federate is going to be sending and receiving to and from the federation but, ironically, your federate probably doesn’t. That is, as the creator of this federate you will need to define in your code somewhere what values you are going to be sending out and what to do with the values you will be subscribing.

The HELICS names for all those messages is in the JSON configuration and you could write a parser to read in that file and make the connection to your internal variables. HELICS has already read and parsed the file, though, and to avoid everybody having to reinvent the wheel, it provides methods to access the necessary information:

input_count = h.helicsFederateGetInputCount(fed)
input_ID = h.helicsFederateGetInputByIndex(fed, index)
input_key = h.helicsSubscriptionGetKey(input_ID)

pub_count = h.helicsFederateGetPublicationCount(fed)
pub_ID = h.helicsFederateGetPublicationByIndex(fed, index)
pub_key = helicsPublicationGetKey(pub_ID)

endpoint_count = h.helicsFederateGetPublicationCount(fed)
endpoint_ID = h.helicsFederateGetEndpointByIndex(fed, index)
endpoint_name = helicsEndpointGetName(endpoint_ID)

Getting the number of the inputs/publications/endpoints and then looping over them making a call to get the unique ID of each one allows specific information from the JSON to be accessed by that ID. Most importantly, it allows access to the name (sometimes called the “key”) and the “info” field in the JSON. “info” is specifically not used by HELICS and is purely there as a means to allow you, the simulator developer, to do whatever you need to do to complete the federates integration into the co-simulation.

Federate Execution

Once any linking between wider federation and the custom federate being created is complete, the federate itself indicates it is ready to begin advancing in time:

h.helicsFederateEnterExecutingMode(fed)

This method call is a blocking call; your custom federate will sit there and do nothing until all other federates have also finished any set-up work and have also requested to begin execution of the co-simulation. Once this method returns, the federation is effectively at simulation time of zero.

And now begins the core of the co-simulation where the following several steps are looped over for the duration of the simulated time:

	Request a simulation time

grantedtime = h.helicsFederateRequestTime (fed, time)

Assuming any necessary calculations have been completed, the federate requests a simulated time. This time is determined by the nature of the simulator and generally represents the maximum time over which, in none of the inputs of the simulator change, no new outputs would need to be calculated. For simulators with a fixed time-step, the time requested will be the next time-step. (For these types of simulators, it’s a good idea to set the “uninterruptible” flag as well, just to keep the simulator on these intervals.)

For other types of simulators, controller for example, you may want to change an output every time an input changes, but never any other time. In these cases, you can make the time request of maxTime; this is the end of the simulation time and thus the federate will do nothing until a new input value changes and the federate is granted that time. (In this case, you would want to make sure the “uninterruptible” flag was NOT set so that the federate is woken up on these input changes.)

Like helicsFederateEnterExecutingMode, this method is a blocking call. Your federate will do nothing until the HELICS core has granted a time to it.

	Get new input values

int_value = h.helicsInputGetInteger(sub_ID)
float_value = h.helicsInputGetDouble(sub_ID)
real_value, imag_value = h.helicsInputGetComplex(sub_ID)
string_value = h.helicsInputGetChar(sub_ID)
...

Once granted a time, the federate is woken up and can begin execution. The granted time may or may not be the requested time as the arrival of new inputs from the federation can cause the federate to be woken up prior to the requested time. More than likely, your federate will want to check what time has been granted and may choose different paths of execution based on whether this was the requested time or not.

As part of this execution the federate will almost certainly want to update all its inputs from the federation and use these in performing the key operations of the federate. The APIs above show how these call can be made. As can be seen, HELICS has built in type conversion (where possible [https://www.youtube.com/watch?v=mZOAn-3aATY]) and regardless of how the sender of the data has formatted it, HELICS can present it as requested by the appropriate method call.

	Output new values

helicsPublicationPublishInteger(pub_ID, int_value)
helicsPublicationPublishDouble(pub_ID, float_value)
helicsPublicationPublishComplex(pub_ID, real_value, imag_value)
helicsPublicationPublishChar(pub_ID, string_value)
...

Once the new inputs have been collected and all necessary calculations made, the federate can update it’s values for the rest of the federation to use. The API calls above allow these output values to be published out to the federation. As in when reading in new values, these output values can published as a variety of data types and HELICS can handle type conversion if one of the receivers of the value asks for it in a type different than published.

Federate Finalization

Once the federate has completed its contribution to the it needs to close out its connection to the federation. Typically a federate knows it has reached the end of the co-simulation when it is granted maxTime. To leave the federation cleanly (without causing errors for itself or others in the co-simulation) the following process needs to be followed:

h.helicsFederateFinalize(fed)
#wait until the broker is finished (-1 is indefinite timeout otherwise it is the number of ms to wait)
h.helicsBrokerWaitForDisconnect(broker, -1);
h.helicsFederateFree(fed)
h.helicsCloseLibrary()

helicsFederateFinalize() signals to the core and brokers that this federate is leaving the co-simulation. This process will take an indeterminate amount of time and thus it is necessary to poll the connection status to the broker. Once that connection has closed, the memory of the federate (associated with HELICS) is freed up with helicsFederateFree() and the processes in the HELICS library are terminated with helicsCloseLibrary(). At this point, the federate can safely end execution completely.

 Simultaneous Co-simulations

Simultaneous Co-simulations

Sometimes it is necessary or desirable to be able to execute multiple simultaneous simulations on a single computer system. Either for increased parallelism or from multiple users or as part of a larger coordinated execution for sensitivity analysis or uncertainty quantification. HELICS includes a number of different options for managing this and making it easier.

General Notes

HELICS starts with some default port numbers for network communication, so only a single broker (per core type) with default options is allowed to be running on a single computer at a given time. This is the general restriction on running multiple simultaneous co-simulations. It is not allowed to have multiple default brokers running at the same time, the network ports will interfere and the co-simulation will fail.

There are a number of ways around this and some tools to assist in checking and coordinating.

Specify port numbers

The manual approach works fine. All the network core types accept user specified port numbers. The following script will start up two brokers on separate port numbers:

helics_broker --type=zmq --port=20200 &
helics_broker --type=zmq --port=20400 &

Federates connecting to the broker would need to specify the --brokerport=X to connect with the appropriate broker. These brokers operate independently of each other. The port numbers assigned to the cores and federates can also be user assigned but if left to default will be automatically assigned by the broker and should not interfere with each other.

Use Broker server

For the zmq, zmqss, tcp, and udp core types it is possible to use the broker server.

helics_broker_server --zmq
helics_broker_server --zmqss
helics_broker_server --tcp
helics_broker_server --udp

multiple broker servers can be run simultaneously

helics_broker_server --zmq --tcp --udp

The broker server currently has a default timeout of 30 minutes on the default port and will automatically generate brokers on separate ports and direct federates which broker to use. The duration of the server can be controlled via

helics_broker_server --zmq --duration=24hours

It will also generate brokers as needed so the helics_broker does not need to be restarted for every run.

By default the servers will use the default ports and all interfaces. This can be configured through a configuration file

helics_broker_server --zmq --duration=24hours --config=broker_config.json

this is a json file. The sections in the json file include the server type For example

{
 "zmq": {
 "interface": "tcp://127.0.0.1"
 },
 "tcp": {
 "interface": "127.0.0.1",
 "port": 9568
 }
}

There is also a webserver that can be run with the other broker servers.

Use of keys

If there are multiple users and you want to verify that a specific broker can only be used with federates you control. It is possible to add a key to the broker that is required to be supplied with the federates to connect to the broker. NOTE: this is not a cryptographic key, it is just a string that is not programmatically accessible to others.

helics_broker --type=zmq --key=my_broker_key

Federates then need to supply the key as part of the configuration string otherwise the broker will return an error on connection. This is like a fence that prevents some accidental interactions. The rule is that both the federate and broker must provide no key or the same key.

 Timing

Timing

The section on federates addressed the data-exchange responsibility of the co-simulation platform and this will address the timing and synchronization requirements. These two functions work hand-in-hand; for data-exchange between federates to be productive it must be delivered to each federate at the appropriate time. Co-simulation breaks down if federates are simulating different times (e.g. noon for one, 9am for another) and exchanging data as if they were operating at the same time; the system is no longer coherent.

As discussed in the section providing the overview of co-simulation operation the primary mechanism HELICS uses to regulate the time of the individual federates (and thus the federation as a whole), is an iterative process of a federate requesting a simulated time to which it can advance and being granted that time (or another) by the federate’s associated HELICS core. For example, a power system simulator may be ready to simulate the next second of operation and once its HELICS core has determined it is appropriate, it will grant the power system simulator that time.

To be clear, it is the role of each federate to determine which time it should request and it is the job of those integrating the simulator with HELICS to determine how best to estimate that value. For simulators that have no internal mechanisms for changing state (e.g. a power system at steady-state whose loads are time-invariant), a time request for infinity is made. (Technically, the value is a constant called maxTime which equals 1e12 seconds.). Until an input value changes, these federates have nothing to do and request that they are not granted a time until the co-simulation reaches a conclusion. If, instead of static load shapes that same simulator was using hourly load profiles, it would make more sense for the federate to make time requests in one-hour increments.

After making a time request, federates are granted a time by their HELICS core and the time they are granted will be one of two values: the time they requested(or the next available valid time) or an earlier valid time. Being granted a time earlier than requested is always accompanied by a new value in one of its subscriptions/endpoints. A change in the federates boundary conditions may require a change in one of the outputs (publications) for that federate and its core is obliged to wake up the federate so it can process this new information. (There are a few mechanisms by which trivial or nuisance updates for a federate can be ignored and will be discussed later in this section.)

So what does a federate do while its waiting to be granted a time? Generally, nothing. When a federate makes a time request it calls a HELICS function that blocks the execution of that thread in HELICS. (If the simulator in question is multi-threaded then other threads can continue to operate; hopefully whatever their working on is largely independent of the co-simulation). The federate sits and waits for a return value from that function (the granted time), allowing the rest of the federation to execute. The implication of making a time request is that, given the current state of its boundary conditions, the federate has nothing more to do until the time it is requesting (or until it receives a new value that changes its boundary conditions from another federate).

Relatedly, not all federates are granted the same simulation time. Thinking of our power system example with hourly loads, it could be that the power system federate makes hourly time requests while the controller, generally, requests maxTime, waiting for a new value to come in for it to act on. The power system federate would be granted times of 1pm, 2pm, 3pm, etc while the controller federate sits and waits in the time request blocking function. It would not know that the power system simulator is advancing in simulated time until it is granted a time itself (say, when the voltage at a certain node gets too high and triggers a publication from the power system simulator).

HELICS co-simulations end under one of two conditions: when all federates have been granted the time of maxTime or when all federates have notified the broker (via their core) that they are terminating and do so. The termination of the federates triggers a cascade of terminations throughout the federation: once all the federates associated with a core (often only one) have terminated, the core itself terminates and once all cores associated with a broker have terminated, the broker itself terminates. This concludes the co-simulation and leaves the original models, configuration files, executing simulators, and results files in place for review.

Timing/Synchronization Options

The same JSON configuration file used to set the publications, subscriptions, and endpoints as discussed in the section on federates also has a number of parameters that can be set to influence how the federate manages its timing with the co-simulation.

{
 "name":"generic_federate",
 ...
 "uninterruptible":false,
 "period": 1.0,
 "offset": 0.0,
 ...
}

	uninterruptible [false] - Normally, a federate will be granted a time earlier than it requested when it receives a message from another federate; the presence of any message implies there could be an action the federate needs to take and may generate new messages of its own. There are times, though, when it is important that the federate only be granted a time (and begin simulating/executing again) that it has previously requested. For example, there could be some controller that should only operate at fixed intervals even if new data arrives earlier. In these cases, setting the uninterruptible flag to true will prevent premature time grants.

	period - Many time-based simulators have a minimum time-resolution or a user-configurable step size. The period parameter can be used to effectively synchronize the times that are granted with the defined simulation period. The default units for period are in seconds but the string for this parameter can include its own units (e.g. “2 ms” or “1 hour”). Setting period will force all time grants to occur at times of n*period even if subscriptions are updated, messages arrive, or the federate requests a time between periods. This value effectively makes the federates uninterruptible during the times between periods. Relatedly…

	offset [0] - There may be cases where it is preferable to have a simulator receive time grants that are offset slightly in time to one or more other federates. Defining an offset value allows this to take place; units are handled the same as in period. Setting both period and offset, will result in the all times granted to the federate in question being constrained to n*period + offset.

	timeDelta [0] - timeDelta has some similarities to period; where period constrained the granted time to regular intervals, timeDelta constrains the grant time to a minimum amount from the last granted time. Units are handled the same as in period.

More than likely you’re going to want to set at least one of these based on how the federate in question handles time (assuming that whoever integrated the federate didn’t set any of them programmatically). For example, if the federate has a minimum time-step, setting period to that time-step value will guarantee that grants will only happen on that time-step. That is, if the federate has no concept of time shorter than one second, setting period to 1 second will guarantee that the federate is never granted a time of, say, 3.3 seconds even if new publication values arrive at that time. If those new values show up at 3.3 seconds and period is set to 1 second, the federate will see them when it is woken up at 4 seconds. HELICS will also delay any requests of invalid times to the next allowed time. For example if a period of 1.0 was set and request was made at 3.3 seconds the grant would occur at 4.0 seconds.

Alternatively, if the federate has been integrated in a manner such that it already makes time requests on the simulators minimum time-step, then setting uninterruptible will have the same effect. The federate will always request values on its time-step and any new publications or messages that arrive in between those time will be ignored. Also alternatively, setting timeDelta to the time-step and setting uninterruptible has the same effect as setting period to time-step (uninterruptible effectively becomes irrelevant and can be set or cleared).

Its important to note that these settings specifically impact the granted time and not the ability to make a time request. That is, with period set to 1 second and the current time is 3 seconds, making a time request of 3.1 seconds will not throw an error. It will generate a log warning message but this can be disabled as well; it will result in a time of 4 seconds being granted.

Example: Timing in a Small Federation

Just for the purposes of illustration, let’s suppose that a co-simulation federation with the following timing parameters has been assembled:

	Logger - This federate is a results logger and simply writes out to files the current values of various publications made by the other federates in the co-simulation. This logging simulator will record values every 1 ms and as such, the JSON config sets period to this value and sets the uninterruptible flag.

	Generator - This is a generator simulator that specializes in comprehensive modeling of the machine dynamics. The Generator will have an endpoint used to receive commands from the Generator Controller subscriptions to the Power System to provide the inputs necessary to replicate the physics of its system.

The models of the generator are valid at a time-step of 0.1 ms and thus the simulator integrator requires that the period of the HELICS interface be set to some multiple of 0.1. In this case we’ll use 1 ms and to ease integration with the Power System federate, it will also have an offset of 0.5 ms.

	Generator Controller - This is an event-based simulator, updating the control commands to the Generator federate whenever new inputs are received from the Power System federate (subscriptions to the physical values it calculates). As such, it will always request maxTime, expecting to be granted times whenever the state of the Power System federate changes. The timeDelta will be set to 0.010 ms to replicate the time it takes to calculate and communicate the command signals to the Generator.

	Power System - This federate is a classic power system dynamics simulator with a fixed time-step of 1 ms. The integrator of this simulator choose to realize this by setting the uninterruptible flag and hard-coding the time requests to advance at 1 ms intervals.

Below is a timing diagram showing how these federates interact during a co-simulation. The filled blocks show when each federate has been woken up and is active.

[image: Example timing diagram]

Items of notes:

	Generator Controller gets granted a time of 1 ms (at the first grant time) even though is requested maxTime because a message was created by the Power System federate at that time stamp. As Generator Controller depends on nothing else, HELICS was able to grant it the same time as Power System even though it is clearly performing its calculations after Power System has performed its.

	Relatedly, Generator Controller requests a time of maxTime once it has calculated the new control signals for Generator. Due to the value set by timeDelta, the soonest time it can be granted would be 0.01 ms after its most recent granted time (1.01 in the case of the first operational period, 2.01 in the case of the second period.)

	When Logger is granted a time of 1 ms, the values it will record are those previously published by other federates. Specifically, the new values that Power System is calculating are not available for Logger to record.

Exercises

To get a reader some practice on how timing working in HELICS some exercises originally used as part of an in person tutorial are available

 Exercises in Co-simulation timing

Exercises in Co-simulation timing

A few simple exercises about co-simulation timing

Key Parameters

	Period: The minimum time resolution a federate will allow.

	Offset: a shift in the period. Allowed times for federate grants after time 0 are offset+N*period, where N is a non-negative integer.

	Time_delta: the minimum time between grants, i.e. if a federate is granted time T, the next possible time is T+Time_delta.

Modifier Flags

	Uninteruptible: a federate can only be granted requested times

	wait_for_current_time_update: specify that a federate should wait until all federates executing at the current time have finished.

[image: Connectivity Diagram]

	Federation Setup [A: period=1; B: period=2; C: period=3]

a. Following time 0, which federate could execute next? ___________________________

b. If all federates execute at all allowed times, what is the next time Federate B could have access to data from Federate C. __________________

c. What is the next time all federate will be able to execute simultaneously? __________________

Key Principle: Federates are interrupted if there is updated data available and allowed time prior to the requested time

	Federation Setup [A: period=1,wait_for_current_time_update; B: period=2; C: period=3]

a. At what time will the data from Federate B published at time 2, be available to Federate A? ______________

b. Federate A requests time 4: Federate B publishes at time 2. What time is Federate A granted? _____________

c. Federate A requests time 2: Federate B publishes at time 2. What time does Federate A receive the data? _________________

e. If A did not have the wait_for_current_time_update flag active, what time would Federate A receive the data? ________________

Key Principle: Federates are granted the next allowed time after the time specified in a request if they are not interrupted.

	Federation Setup [A: period=1; B: period=2,offset=1,time_delta=2; C: period=3]

a. After time=0 what is the next allowable time for Federate B? _______________

b. Federate C requested a time of 4, what time is Federate C granted? _______________

	Federation Setup [A: period=1; B: period=2,uninterruptible; C: period=3]

a. Federate C Publishes at time 3, Federate B requests time 6, what time will it be granted?______________

b. If Federate B were not uninterruptible what time would it be granted? _______________

[image: Connectivity Diagram]

	Federation Setup [A: period=1; B: period=2; C: period=3], Federates will send an update when they have received an update from the all other connected federates. Federate A sends an update at time 0, what is the update sequence

	Time

	Federate(s)

	

	

	

	

	

	

	

	

	

	

	

	

	

	

For answers see answers

 Exercises in Co-simulation timing

Exercises in Co-simulation timing

A few simple exercises about co-simulation timing

Key Parameters

	Period: The minimum time resolution a federate will allow.

	Offset: a shift in the period. Allowed times for federate grants after time 0 are offset+N*period, where N is a non-negative integer.

	Time_delta: the minimum time between grants, i.e. if a federate is granted time T, the next possible time is T+Time_delta.

Modifier Flags

	Uninteruptible: a federate can only be granted requested times

	wait_for_current_time_update: specify that a federate should wait until all federates executing at the current time have finished.

[image: Connectivity Diagram]

	Federation Setup [A: period=1; B: period=2; C: period=3]

a. Following time 0, which federate could execute next? A at time 1

b. If all federates execute at all allowed times, what is the next time Federate B could have access to data from Federate C. 4

c. What is the next time all federate will be able to execute simultaneously? 6

Key Principle: Federates are interrupted if there is updated data available and allowed time prior to the requested time

	Federation Setup [A: period=1,wait_for_current_time_update; B: period=2; C: period=3]

a. At what time will the data from Federate B published at time 2, be available to Federate A? 2

b. Federate A requests time 4: Federate B publishes at time 2. What time is Federate A granted? 2

c. Federate A requests time 2: Federate B publishes at time 2. What time does Federate A receive the data? 2

e. If A did not have the wait_for_current_time_update flag active, what time would Federate A receive the data? 3

Key Principle: Federates are granted the next allowed time after the time specified in a request if they are not interrupted.

	Federation Setup [A: period=1; B: period=2,offset=1,time_delta=2; C: period=3]

a. After time=0 what is the next allowable time for Federate B? 3, time=1 is not allowed due to time_delta

b. Federate C requested a time of 4, what time is Federate C granted? 6

	Federation Setup [A: period=1; B: period=2,uninterruptible; C: period=3]

a. Federate C Publishes at time 3, Federate B requests time 6, what time will it be granted?6, B cannot be granted anything other than 6 due to uninterruptible flag

b. If Federate B were not uninterruptible what time would it be granted? 4

[image: Connectivity Diagram]

	Federation Setup [A: period=1; B: period=2; C: period=3], Federates will send an update when they have received an update from the all other connected federates. Federate A sends an update at time 0, what is the Update sequence

	Time

	Federate(s)

	3

	C

	4

	B

	4

	A

	6

	C

	6

	B

	6

	A

	9

	C

 Value Federates

Value Federates

HELICS messages that are value-oriented are the most common type of messages. As mentioned in the federate introduction, value messages are intended to be used to represent the physics of a system, linking federates at their mutual boundaries and allowing a larger and more complex system to be represented than would be the case if only one simulator was used.

Value Federate Message Types

There are four interface types for value federates that allow the interactions between the federates (a large part of co-simulation/federation configuration) to be flexibly defined. The difference between the four types revolve around whether the interface is for sending or receiving HELICS messages and whether the sender/receiver is defined by the federate (technically, the core associated with the federate):

	Publications - Sending interface where the federate core does not specify the intended recipient of the HELICS message

	Named Inputs - Receiving interface where the federate core does not specify the source federate of the HELICS message

	Directed Outputs - Sending interface where the federate core specifies the recipient of HELICS message

	Subscriptions - Receiving interface where the federate core specifies the sender of HELICS message

In all cases the configuration of the federate core declares the existence of the interface to use for communicating with other federates. The difference between “publication”/”named inputs” and “directed outputs”/”subscriptions” is where that federate core itself knows the specific names of the interfaces on the receiving/sending federate core.

The message type used for a given federation configuration is often an expression of the preference of the user setting up the federation. There are a few important differences that may guide which interfaces to use:

	Which interfaces does the simulator support? - Though it is the preference of the HELICS development team that all integrated simulators support all four types, that may not be the case. Limitations of the simulator may limit your options as a user of that simulator.

	Is portability of the federate and its configuration important? - Because “publications” and “named inputs” don’t require the federate to know who it is sending HELICS messages to and receiving HELICS messages from as part of the federate configuration, it affords a slightly higher degree of portability between different federations. The mapping of HELICS messages still needs to be done to configure a federation, its just done separately from the federate configuration file via a broker or core configuration file. The difference in location of this mapping may offer some configuration efficiencies in some circumstances.

Though all four message types are supported, the remainder of this guide will focus on publications and subscriptions as they are conceptually easily understood and can be comprehensively configured through the individual federate configuration files.

Federate Configuration Options via JSON

For any simulator that you didn’t write for yourself, the most common way of configuring that simulator for use in a HELICS co-simulation will be through the use of an external JSON configuration file. TOML files are also supported but we will concentrate on JSON for this discussion. This file is read when a federate is being created and initialized and it will provide all the necessary information to incorporate that federate into the co-simulation.

As the fundamental role of the co-simulation platform is to manage the synchronization and data exchange between the federates, you may or may not be surprised to learn that there are generic configuration options available to all HELICS federates that deal precisely with these. In this section, we’ll focus on the options related to data exchange as pertaining to value federates, those options and in Timing section we’ll look at the timing parameters.

Let’s look at a generic JSON configuration file as an example with the more common parameters shown; the default values are shown in “[]”. (Further parameters and explanations can be found in the federate configuration guide.

General Configuration Parameter

Though contained here in this section on value federates, the options below are applicable to both value and message federates. As value federates are the more common type, we’ve put them here.

{
 ...
 "name":"generic_federate",
 "coreType": "zmq"
 ...
}

	name - Every federate must have a unique name across the entire federation; this is functionally the address of the federate and is used to determine where HELICS messages are sent. An error will be generated if the federate name is not unique.

	coreType [zmq] - There are a number of technologies or message buses that can be used to send HELICS messages among federates. Every HELICS enabled simulator has code in it that creates a core which connects to a HELICS broker using one of these messaging technologies. ZeroMQ (zmq) is the default core type and most commonly used but there are also cores that use TCP and UDP networking protocols directly (forgoing ZMQ’s guarantee of delivery and reconnection functions), IPC (uses Boost’s interprocess communication for fast in-memory message-passing but only works if all federates are running on the same physical computer), and MPI (for use on HPC clusters where MPI is installed).

Value Federate Data Exchange Options

{
 ...
 "only_update_on_change":false, //indicator that the federate should only indicate updated values on change
 "only_transmit_on_change":false, //indicator that the federate should only publish if the value changed
 "source_only":false,
 "observer":false,
 ...
}

	only_update_on_change [false] - In some cases a federate may have subscribed to a value that changes infrequently. If the publisher of that makes new publications regularly but the value itself has not changed, setting this flag on the receiving federate will prevent that federate from being sent the new, but unchanged value and having to reprocess it’s received data when nothing has changed. Note that this flag will only prevent the old value from getting through if it is bit-for-bit identical to the old one.

	only_transmit_on_change [false] - Complementary to only_update_on_change, this flag can be set to prevent identical values from being published to the federation if they have not changed.

	source_only [false] - Some federates may exist only to provide data for the federation to use in their calculations. If using such a federate, set the source_only flag to true; doing so allows for slightly more efficient synchronization and higher performance of the federation.

	observer [false] - Conversely, some federates may only participate in the federation by recording values (perhaps for diagnostic purposes or for logging results). If using such a federate, set the observer flag to true to achieve similar efficiencies as in the source_only flag.

Value Federate Interface Configuration

{
 "publications" : [
 {
 "key" : "IEEE_123_feeder_0/totalLoad",
 "global" : true,
 "type" : "complex",
 "unit" : "VA",
 "info" : "{
 \"object\" : \"network_node\",
 \"property\" : \"distribution_load\"
 }"
 },
 {
 ...
 }
],
 "subscriptions" : [
 {
 "required": true,
 "key" : "TransmissionSim/transmission_voltage",
 "type" : "complex",
 "unit" : "V",
 "info" : "{
 \"object\" : \"network_node\",
 \"property\" : \"positive_sequence_voltage\"
 }"
 },
 {
 ...
 }
]
}

	publications and/or subscriptions - These are lists of the values being sent to and from the given federate.

	key -

	publications - The string in this field is the unique identifier (at the federate level) for the value that will be published to the federation. If global is set (see below) it must be unique to the entire federation.

	subscriptions - This string identifies the federation-unique value that this federate wishes to receive. Unless global has been set to true in the publishings JSON configuration file, the name of the value is formatted as <federate name>/<publication key>. Both of these strings can be found in the publishing federate’s JSON configuration file as the name and key strings, respectively. If global is true the string is just the key value.

	global [false] - (publications only) global is used to indicate that the value in key will be used as a global name when other federates are subscribing to the message. This requires that the user ensure that the name is used only once across all federates. Setting global to true is handy for federations with a small number of federates and a small number of message exchanges as it allows the key string to be short and simple. For larger federations, it is likely to be easier to set the flag to false and accept the extra naming

	required [false] -

	publications - At least one federate must subscribe to the publications.

	subscriptions - The message being subscribed to must be provided by some other publisher in the federation.

	type - HELICS supports data types and data type conversion (as best it can [https://www.youtube.com/watch?v=mZOAn-3aATY]).

	units - HELICS is able to do some levels of unit conversion, currently only on double type publications but more may be added in the future. The units can be any sort of unit string, a wide assortment is supported and can be compound units such as m/s^2 and the conversion will convert as long as things are convertible. The unit match is also checked for other types and an error if mismatching units are detected. A warning is also generated if the units are not understood and not matching. The unit checking and conversion is only active if both the publication and subscription specify units.

	info - The info field is entirely ignored by HELICS and is used as a mechanism to pass configuration information to the federate so that it can properly integrate into the federation. Thus, there is no standard content or format for this field; it is entirely up to the individual simulators to decide how the data in this field (if any) should be used. Often it is used by simulators to map the HELICS names into internal variable names as shown in the above example. In this case, the object network_node has a property called positive_sequence_voltage that will be updated with the value from the subscription TransmissionSim/transmission_voltage.

Example 1a - Basic transmission and distribution powerflow

To demonstrate how a to build a co-simulation, an example of a simple integrated transmission system and distribution system powerflow can be built; all the necessary files are found here but to use them you’ll need to get some specific software installed; here are the instructions:

	HELICS

	GridLAB-D [https://github.com/gridlab-d/gridlab-d/tree/develop] - Enable HELICS, see instructions here [http://gridlab-d.shoutwiki.com/wiki/Connection:helics_msg]

	Python [https://www.anaconda.com/download/] - Anaconda installation, if you don’t already have Python installed. You may need to also install the following Python packages (conda install …)

	matplotlib

	time

	logging

	PyPower [https://pypi.org/project/PYPOWER/] - pip install pypower

	helics_cli [https://github.com/GMLC-TDC/helics-cli] - pip install git+git://github.com/GMLC-TDC/helics-cli.git@main

This example has a very simple message topology (with only one message being sent by either federate at each time step) and uses only a single broker. Diagrams of the message and broker topology can be found below:

[image: Ex. 1a message topology]

[image: Ex. 1a broker topology]

	Transmission system - The transmission system model used is the IEEE-118 bus model. To a single bus in this model the GridLAB-D distribution system is attached. All other load buses in the model use a static load shape scaled proportionately so the peak of the load shape matches meet the model-defined load value. The generators are re-dispatched every fifteen minutes by running an optimal power flow (the so-called “ACOPF” which places constraints on the voltage at the nodes in the system) and every five minutes a powerflow is run the update the state of the system. To allow for the relatively modest size of the single distribution system attached to the transmission system, the distribution system load is amplified by a factor of fifteen before being applied to the transmission system.

	Distribution system - A GridLAB-D model of the IEEE-123 node distribution system has been used. The model includes voltage regulators along the primary side of the system and includes secondary (or distribution) transformers with loads attached to the secondary of these transformers. The loads themselves are ZIP loads with a high impedance traction that are randomly scaled versions of the same time-varying load-shapes.

In this particular case, the Python script executing the transmission model also creates the broker; this is a choice of convenience and could have been created by any other federates. This simulation is run for 24 hours.

Running co-simulations via helics_cli

To run this simulation, the HELICS team has also developed an application called helics_cli (command line interface) which, among other uses, creates a standardized means of launching co-simulations. The application can be downloaded from the helics_cli repository [https://github.com/GMLC-TDC/helics-cli]. Discussion of how to configure helics_cli for a given simulation is discussed in the section on helics_cli but for all these examples, the configuration has already been done. In this case, that configuration is in the examples folder as “cosim_runner_1a.json” and looks like this:

{
 "broker": false,
 "federates": [
 {
 "directory": "./Transmission/",
 "exec": "python Transmission_simulator.py",
 "host": "localhost",
 "name": "PythonCombinationFederate"
 },
 {
 "directory": "./Distribution/",
 "exec": "gridlabd IEEE_123_feeder_0.glm",
 "host": "localhost",
 "name": "GridLABDFederate"
 }
],
 "name": "Example-1a-T-D-Cosimulation-HELICSRunner"
}

Briefly, it’s easy to guess what a few of these parameters do:

	“directory” is the location of the model to be run

	“exec” is the command line call (with all necessary options) to launch the co-simulation

With a properly written configuration file, launching the co-simulation becomes very straightforward:

helics run --path <path to helics_cli configuration file>

Experiment and Results

To show the difference between running these two simulators in a stand-alone analysis and as a co-simulation, modify the federate JSON configurations and use helics_cli in both cases to run the analysis. To run the two as a co-simulation, leave publication and subscription entries in the federate JSON configuration. To run them as stand-alone federates with no interaction, delete the publications and subscriptions from both JSON configuration files. By removing the information transfer between the two they become disconnected but are still able to be executed as if they were participating in the federation.

The figure below shows the total load on the transmission node to which the distribution system model is attached over the course of the simulated day, both when operating stand-alone and when running in a co-simulation with the distribution system.

[image: Ex. 1a transmission bus voltage]

As can be seen, the impacts of co-simulation are relatively modest in this case. Even when the transmission system provides a dynamic high-side substation voltage (rather than just assuming a fixed value) and even with loads that have been created to be very voltage sensitive, the changing substation voltage doesn’t impact the load substantially and change the voltage profiles significantly. (If you’re curious to see an even bigger impact, you can disable the voltage regulators in GridLAB-D by editing the regulator_configuration objects so that the Control parameter is set to MANUAL. This will lock the regulators into place and allow the substation voltage to propagate through the circuit unregulated.) (xxxxxxx - double-check this.)

The load of the distribution circuit as seen by the transmission model with and without co-simulation is similarly muted.

[image: Ex. 1a distribution system load]

 Interacting with a Running Simulation

Interacting with a Running Simulation

Starting in HELICS 2.4 there is a webserver that can be run with the helics_broker or helics_broker_server.
This requires using a boost version >=1.70.
The Webserver can be disabled by the HELICS_DISABLE_BOOST=ON or HELICS_DISABLE_WEBSERVER=ON options being set.

Startup

The webserver can be started with the option --http to start a restful interface using HTTP, or --web to start a server using websockets.
For example to run a broker server with zmq and the webserver active for 30 minutes, you can use the following:

helics_broker_server --http --zmq --duration 30minutes

The --duration is optional and the default is 30 minutes but any time can be specified.

The web server is configured by default on the localhost address port 80.
If you want to configure this it can be done through a configuration file.
The format is json.

{
 "http": {
 "port": 8080,
 "interface": "0.0.0.0"
 },
 "webscoket": {
 "port": 8008,
 "interface": "0.0.0.0"
 }
}

Then it can be specified on the command line like so:

helics_broker_server --web --zmq --config broker_server_config.json

The configuration will then make the REST web server accessible on any interface on port 8080 and a WebSocket server on port 8080. The port in use can be specified in a configuration file, or via command line such as

helics_broker_server --web --zmq --http_server_args="--http_port=80"

Arguments are passed to servers using an option in the form --<server>_server_args, and in that arg field --<server>_port and --<server>_interface are valid arguments. Valid server names are http, websocket, zmq, ‘tcp’, and udp, and eventually mpi. The http web server also acknowledges HELICS_HTTP_PORT as an environment variable. The websocket server acknowledges HELICS_WEBSOCKET_PORT for the port numbers of the respective servers.

REST API

The running webserver will start a process that can respond to HTTP requests.

HTTP actions

	HTTP VERB

	Description

	GET

	Make a query, usually with nothing in the message body

	PUSH

	most general command, usually for creating a broker or time barrier but other actions are possible

	SEARCH

	make a query mostly with data in the body

	PUT

	create a broker, or time barrier on a broker

	DELETE

	remove a broker or time barrier

Parameters

	parameter

	Description

	command

	specify the command to use if not implied from the HTTP action, primarily PUSH

	broker

	The broker to target a focused request, or the name of a broker to create or delete

	type

	For commands that create a broker, this is the type of the broker to create

	target

	The actual object to target in a query

	query

	The query to execute on the specified target

	args

	The command line args to pass into a created broker

	time

	The time associated with creation or update of a time barrier

Valid commands for the command parameter in either JSON or the URI:

	query, search : run a query

	create : create a broker

	delete, remove : remove a broker

	barrier : create or update a time barrier

	clear_barrier: clear a time barrier

Websocket API

The websocket API will always respond in a JSON packet.
For search/get operations where the response is a JSON value that JSON will be returned.
for other responses, they are converted to a JSON.

For create/delete commands the response will be:

{
 "status": 0
}

{
 "status": 0,
 "value": "<query result>"
}

For queries that are not a json value the response will be:

{
 "status": 401, //or some other code
 "error": "error message"
}

For queries that did not result in a valid response the response will be:

{
 "status": 404,
 "error": "error message"
}

Making queries

As a demo case there is a brokerServerTestCase executable built as part of the HELICS_EXAMPLES.
Running this example starts a webserver on the localhost using port 80.

The response to queries is a string either in plain text or json.
For example:

localhost/brokers

will return

{
 "brokers": [
 {
 "address": "tcp://127.0.0.1:23408",
 "isConnected": true,
 "isOpen": false,
 "isRoot": true,
 "name": "brokerA"
 },
 {
 "address": "tcp://127.0.0.1:23410",
 "isConnected": true,
 "isOpen": true,
 "isRoot": true,
 "name": "brokerB"
 }
]
}

Other queries should be directed to a specific broker such as:

http://localhost/brokerA/brokers

which will produce a string vector:

[41888-wfQ8t-GIGjS-dndI3-e7zuk;41888-e9KF2-HAfm8-Rft0w-JLV4a]

The following:

http://localhost/brokerA/federate_map

will produce a map of the federates in the federation:

{
 "brokers": [],
 "cores": [
 {
 "federates": [
 {
 "id": 131072,
 "name": "fedA_1",
 "parent": 1879048192
 }
],
 "id": 1879048192,
 "name": "41888-wfQ8t-GIGjS-dndI3-e7zuk",
 "parent": 1
 },
 {
 "federates": [
 {
 "id": 131073,
 "name": "fedA_2",
 "parent": 1879048193
 }
],
 "id": 1879048193,
 "name": "41888-e9KF2-HAfm8-Rft0w-JLV4a",
 "parent": 1
 }
],
 "id": 1,
 "name": "brokerA"
}

Making an invalid query will produce:

http://localhost/brokerA/i_dont_care -> #invalid

Queries can be make in a number of different formats, the following are equivalent:

	http://localhost/brokerA/publications

	http://localhost/brokerA

	http://localhost/brokerA?query=publications

	http://localhost/brokerA/publications

	http://localhost/brokerA/root/publications

	http://localhost?broker=brokerA&query=publications&target=root

In the example, these will all produce [pub1;fedA_1/pub_string] which is a list of the publications.
POST requests can also be made using a similar format.

Queries

Currently any query is accessible through this interface.
Queries have a target and a query.
The target is some named object in the federation and the query is a question.
The available queries are listed here.
More are expected to be added.

Time Barriers

Time Barriers can be created and cleared through the Webserver.

Json

For both the websockets and REST API they can accept arguments in JSON format.
For the REST API the parameters can be a combination of arguments in the URI and JSON in the body of the request
For example:

{
 "command": "search",
 "broker": "broker1",
 "target": "federate0",
 "query": "current_state"
}

The most likely use case for this will be as a component for a more sophisticated control interface, so a more user friendly setup will be using the webserver as a back-end for control, debugging, information, and visualization of a running co-simulation.

doxygen/HELICS_48x48.png

doxygen/HELICS_Logo.png

doxygen/bc_s.png

doxygen/classhelics_1_1NullFilterOperator.png
helics:FitterOperator

I

helics:NullFiterOperatar

doxygen/bdwn.png

doxygen/classhelics_1_1PublicationOnChange.png
helics::Publication

helics:PublicationT< X >

helics:PublicaionOnChange< X >

doxygen/classhelics_1_1Publication.png
helics::Publication

helics:PublicationT< X >

helics:PublicationOnChange= X >

doxygen/classhelics_1_1RandomDelayFilterOperation.png
helics:FitterOperations

I

helics:RandomDelayFilterOperation

doxygen/classhelics_1_1PublicationT.png
helics::Publication

helics:PublicationT< X >

helics:PublicationOnChange= X >

doxygen/classhelics_1_1RegistrationFailure.png
stexception

helics: HelicsException

helics:RegistrationFailure

doxygen/classhelics_1_1RandomDropFilterOperation.png
helics:FitterOperations

I

helics:RandanDopF itz Operation

doxygen/classhelics_1_1TimeData.png
helics: TimeData.

|

helics:Dependencyino

doxygen/classhelics_1_1RerouteFilterOperation.png
helics:FitterOperations

I

helics:RerouteFillerOperation

doxygen/classhelics_1_1NetworkCore.png
helics::Core helics: BrokerBase

|

helics:CommonCare

helics:CommsBroker< COMMS, CommanCore >

helics:NetworkCare< COMMS, haseling >

doxygen/classhelics_1_1NetworkCommsInterface.png
helics::Commsinterface

helics:NetworkCommsinte face

helics:tcp:TepComms

helics:Acp:TepComnsSs

helics:udp:UdpComms

helics::ze romg:ZmgComms

helics: ze rome:ZmgCommsSs

doxygen/classhelics_1_1MessageDataOperator.png
helics:FitterOperator

|

helics:MessageDataOperalor

doxygen/classhelics_1_1MessageConditionalOperator.png
helics:FitterOperator

I

helics:MessageConaiionalOperatar

doxygen/classhelics_1_1MessageFederate.png
helics:MessageFederate

helics:CombinationF ederate

doxygen/classhelics_1_1MessageDestOperator.png
helics:FitterOperator

|

helics:MessageDestOperalor

doxygen/classhelics_1_1MessageTimer.png
stenable_shared_from_this< MessageTimer >

|

helics:MessageTimer

doxygen/classhelics_1_1MessageTimeOperator.png
helics:FitterOperator

|

helics:MessageTimeOperalor

doxygen/classhelics_1_1NetworkBroker.png
helics:Broker

helics: BrokerBase

t

f

helics:CoreBroker

helics:CommsBroker< COMMS, CoreBraker >

helics:NetworkBroker< COMMS, baseline, icade >

doxygen/classhelics_1_1MultiBroker.png
helics:Broker | helics:BrokerBase

. f

helics:CoreBroker

helics:MuliBroker

doxygen/classhelics_1_1InvalidIdentifier.png
stexception

helics: HelicsException

helics:Invalididentiier

doxygen/classhelics_1_1InvalidFunctionCall.png
stexception

helics: HelicsException

helics:InvalidFunctionCal

doxygen/classhelics_1_1InvalidParameter.png
stexception

helics: HelicsException

helics:nvalidParameter

doxygen/classhelics_1_1apps_1_1Source.png
helics::apps:App

|

helics:apps:Source

doxygen/classhelics_1_1apps_1_1TypedBrokerServer.png
helics::apps: TypedBrokerServer

helics::apps:AsioBrokerServer

helics::apps:WebServer

helics::apps:zmBrokerServer

doxygen/classhelics_1_1apps_1_1Tracer.png
helics::apps:App

|

helics:apps:Tracer

doxygen/classhelics_1_1apps_1_1zmqBrokerServer.png
helics::apps: TypedBrokerServer

|

helics: apps:zmBrokerserver

doxygen/classhelics_1_1apps_1_1WebServer.png
helics::apps: TypedBrokerServer

I

helics:apps:WebServer

doxygen/classhelics_1_1detail_1_1ostringbuf.png
streambuf

helics:detail-ostringbur

helics: detail:ostringbufstream

doxygen/classhelics_1_1detail_1_1membuf.png
streambuf

helics: detail:membuf

helics: detail:imemstream

doxygen/classhelics_1_1inproc_1_1InprocComms.png
helics::Commsinterface

I

helics:inproc:inprocCamms

doxygen/classhelics_1_1helicsCLI11App.png
App

|

helics:helicsCLITT App

doxygen/classhelics_1_1ipc_1_1IpcComms.png
helics::Commsinterface

I

helics:ipc:pcCamms

doxygen/classhelics_1_1apps_1_1AsioBrokerServer.png
helics::apps: TypedBrokerServer

I

helics: apps-AsioBrokerServer

doxygen/classhelics_1_1apps_1_1App.png
helics::apps:App

T

helics::apps:Clane

helics::apps:Echo

helics::apps:Player

helics::apps:Recorder

helics::apps:Source

helics::apps:Tracer

doxygen/classhelics_1_1apps_1_1Echo.png
helics::apps:App

|

helics: apps-Echo

doxygen/classhelics_1_1apps_1_1Clone.png
helics::apps:App

I

helics:apps:Clone

doxygen/classhelics_1_1apps_1_1Player.png
helics::apps:App

I

helics:apps:Player

doxygen/classhelics_1_1apps_1_1PhasorGenerator.png
helics::apps::SignalGenerator

|

helics::apps:PhasarGeneratar

doxygen/classhelics_1_1apps_1_1Recorder.png
helics::apps:App

I

helics: apps-Recorder

doxygen/classhelics_1_1apps_1_1RampGenerator.png
helics::apps::SignalGenerator

|

helics: apps-RampGeneralor

doxygen/classhelics_1_1apps_1_1SineGenerator.png
helics::apps::SignalGenerator

|

helics::apps:SineGeneratar

doxygen/classhelics_1_1apps_1_1SignalGenerator.png
helics::apps::SignalGenerator

helics::apps:PhasarGeneratar

helics::apps:RampGenerator

helics::apps:SineGeneratar

doxygen/classhelics_1_1ValueFederate.png
helics:ValueF ederate

helics:CombinationF ederate

_images/timing_fed_setup.png

_images/twofolders.jpg
LI
2

2 .

. rvn.m.ﬁ,‘m* s ke

O pr—
i sne P
T nse i
[T — sz
. e
i tae et
Wrioipes e
v ety

e

pu—
Soosen

o
o

s Bmassecsn

B x = AT PR Bl
A R e |
e st 1] [5 stame
e .
— ke .o -
ot il e =
o e B =
Horesnsonin el

—_— Ee

_images/switchingViews.jpg
Solution Explorer
coME- o
helloworld_sender (CA\..\reposihelloworld_sender) lorer (Ctk

world_sender (1 of 1 projec)
—hd sender
va References

7 elloworld senderzin

& Bctemal Dependencies
HeaderFiles
Resource Fies
Source Files

B C helloworid sender.c

_images/terminology-structure.png
Machine 4

o~
N
£
=
o

Brokerl

Machine 3

Machine 2

Machine 1

_images/windows-command-line-install.png
@ Visual C++ 2015 MSBuild Command Prompt

2:\G3tRepos\HELICS-src\build-windows>cmake -DCAKE_BUILD_TYPE-Release -DCMAKE_INSTALL_PREFIX="C:\local\helics-v1.0.0"
BOOST_ROOT="C: \1ocal\boost_1_65_1" -DBUILD_PYTHON_INTERFACE=ON -G "Visual Studio 14 2015 Win6a
Selecting Windows SDK version to target Windows 10.0.16299
setting up for MSVC
Boost version: 1.65.1
Found the following Boost libraries
program_options
unit_test_framework
filesysten
systen
date_time
chrono
setting version build options
2nq dep 1ibzng
key Files Z:/GitRepos/HELICS-src/build-windows/1ibs/bin/1ibznq-v14e-mt-4_2_3.d11;
/11bs/bin/1ibznq-v14e-nt-gd-a_2_3.d11
Using CHAKE_INSTALL_PREFIX: C:/local/helics-v1.0.0
Configuring done .
Generating done ame
Build files have been written

ice14”

+/GitRepos/HELICS-src/build-windows|

> C_Drive (€ > local >

Z:/GitRepos/HELICS-src/build-windows

Z:\GitRepos\HELICS-src\build-windows>gnake --build . --config Release --target install

tpng

buildjam

ppjam
bootstrap bat
bootstrapsh
indexhim
indexhtml
INSTALL

LICENSE 1.0

_images/windows-command-line-success.png
@ Visual C++ 2015 MSBuild Command Prompt Jecta
New item > Selecta

v
Easy access ¥ Select o
Pinto Quick [
access " Toistory (] Invert selection

Quick access

¥ boost
¥ doc

lib4-msve-140
Documents .

Desktop

Downloads

libs
pictures & more
Githepos o status
ssh * tools
wscode-workspaces boostess
_uscode-workspaces boostpng
boost-buildjam A IAM Fie
Home boostcppjam A JAM File
This pC bootstrapat

30 Objects bootstrapsh
@ indexhtm A Chrome HTML Docu.
@ indexhtml A Chrome HTML Docu.
Documents ‘
c\build-win 0 INSTALL
Downloads @ sarmroot

Music LICENSE 1.0 2/2017 10556 A fext Document

Desktop

Pictures rstess 2/2017 1056 A Cascading Style Shee.

19items

_images/twofoldersAfter.jpg
0106w
=
» [e

i B

Tme B
T pp
e e
[—
[
[
Erdcrarizes
[recstn

St~ X osse- Iqr N

oo

€t v i s oass

e

sopcion
Soscnen

£

sacan

> 8O, BBX=
o)3 LS hadu) Y

e *,..m,,.mm_«,ﬂ..,‘..,..‘
T —
[
Ertsosres
ey
ifemperered
oo

T .
waameaa septin

Dyecsen
pits—s

Goren - seean

(omiay et

5 srcnsane

_images/voltage_reg_message_federate.png
ontroller

Endpoint 2 Endpoint 3

Voltage

regulator
measurement
control

signal signal
Endpoint 1 Endpoint 4

Voltage

Actuator

_images/windows-python-success.png
ual C+-+ 2015 MSBuild Command Prompt - python

Z:\GitRepos\HELICS-src\build-windows>set PYTHONPATH=C:\local\helics-v1.@.@\python;%PYTHONPATHY

windows>python
Nov 8 2017, 15:10:56) [NSC v.1900 64 bit (AMDS4)] on win32
license” for more information

2:\G1tRepos\HELICS-src\build
Python 3.6.3 |Anaconda, Inc.| (defaul
Type "help”, "copyright”, "credits” or
>>> import helics as h

>>> h.helicsGetversion()

"1.0.0 04-15-18"

>>>

lib64-m:
libs

png
uild jam
pjam

trap.bat

tstrap.sh
© indexhtm
© indexhtml
0 INSTAL

doxygen/classhelics_1_1CommFactory_1_1CommTypeBuilder.png
helics::CormmF actory::CommBuilder

I

helics:CommF actory-CommTypeBuilder< CommTYPE >

doxygen/search/search_m.png

_static/HELICS_Logo.png

doxygen/search/search_l.png

doxygen/classhelics_1_1CommsBroker.png
BrokerT

|

helics:CommsBroker< COMMS, BrokerT >

doxygen/classhelics_1_1CommonCore.png
helics::Core

helics: BrokerBase

t

helics:CommonCare

helics:CommsBroker< COMMS, CommanCore >

helics:CommsEroker< MpiCamms, CammanCore >

helics:CommsBroker< TepCommsSS, CommanCore >

helics:CommsBroker< ZmgComms, CommanCore >

helics:CommsBroker< Zm

Comms55, CommonCore >

helics:NetworkCare< COMMS, haseline >

helics:mpi:MpiCare

helics:NetworkCare< TepCommsSs, interface_type:icp >

helics:NetworkCare< ZmgComms, inferface_type:icp >

helics:NetworkCare< ZmgCor

mmsSS, interface_type:icp >

helics:1cp:TcpCoress

helics::ze romg:ZmgCore

helics:ze romg:ZngCoress

doxygen/search/search_r.png

doxygen/classhelics_1_1ConnectionFailure.png
stexception

helics: HelicsException

helics:ConnectionF ailure

doxygen/classhelics_1_1CommsInterface.png
helics::Commsinterface

T

helics:inproc:inprocCamms

helics:ipc:ipcCamms

helics:mp

MpiCamms

helics:NetworkCommsinte face

helics:tcp:TepComms

helics:Acp:TepComnsSs

helics:udp:UdpComms

helics::ze romg:ZmgComms

helics: ze rome:ZmgCommsSs

doxygen/classhelics_1_1CloneFilterOperation.png
helics:FitterOperations

|

helics:CloneFite Operation

doxygen/classhelics_1_1BrokerFactory_1_1BrokerTypeBuilder.png
helics:Broke P actory:Broke rBuilder

I

helics:BrokerF actory-BrokerTypeBuilder< BokerTYPE >

doxygen/tab_s.png

doxygen/classhelics_1_1CloningFilter.png
helics:Filter

I

helics:CloningF iter

doxygen/search/mag_sel.png

doxygen/classhelics_1_1CloneOperator.png
helics:FitterOperator

|

helics:ClaneOperalor

doxygen/search/close.png

doxygen/classhelics_1_1CommFactory_1_1CommBuilder.png
helics::CommF actory::CommBuilder

[

helics:CommF actary:CommTypeBuilder< CommTYPE >

doxygen/classhelics_1_1CombinationFederate.png
helics:ValueF ederate helics:MessageFederate

| A

helics:CombinationF ederate

_images/Ex1a_Broker_topology.png
Broker Topology

~

Transmission and
Generation

System Federate Federate

J

_images/Ex1a_Bus_voltage_118.png
Bus 118 of IEEE 118 Bus System

1.035

1.025

(e

21.015

09958

ur) @3eyjo,

09938

005

1

09918

09898

09878

0.995

0.9858

5591
8vi9T
it
vE9T
1ot
0z:9T
€91
90:9T
65'5T
55T
SYiST
86T
TEST
pTST
LuST
oust
£0'ST
95T
KT
Tt
SEVT
8TYT
et
2228
10T
00T

0.985

TS'€T
V744
LSTT
ogce
€0:TT
9€:1T
601
roz
ST0T
86T
T26T
vS8T
L2381
00'8T
€ELT
90:LT
6€9T
[A%:19
SrST
8TST
TSWT
i 74149
LSET
OE €T
€0ET
9€TT
60TT
It
STIT
8r0T
2ot
vSi6
L6
006
€E'8
08
6EL
[4274
Svi9
819
18'S
veis
LSy
o134
€'y
9E'E
60'€
T
STiT
8piT
Lr41
S0
Lo
00:0

Time of Day

Standalone

Co-Simulation

_images/Ex1a_Feeder_consumption.png
|IEEE 123 node feeder

o
a9

&
(mw) uondwns|

3

~
uo) J9paay

o
a
]

148

Time of Day

o
c
2
]
<
e
=
&

_static/minus.png

_static/plus.png

_static/file.png

doxygen/sync_off.png
&)
<y

doxygen/classhelics_1_1Broker.png
helics:Broker

[

helics:CoreBroker

i

helics:CommsBroker< COMMS, CoreBroker > helics:Commsroker< MpiCamms, CareBroker > helics:CommsBroker< TepCammsSS, CoreBroker > helics:CommsBroker< ZmgComms, CoreBraker > helics:CommsBroker< ZmgCommsSs, CoreBraker > helics:MuliBraker

helics:NetworkBroker< COMMS, baseline, tcade > helics:mpi:MpiBraker helics:NetworkBroker< TcpCommsSs, interface_type:icp, stalic_cast< Int >(care_type:TCP_SS)> helics:NetworkBraker< ZmaComms, interface_type:tcp, 1 > helics:NetworkBroker< ZmgCommsSs, interface_type:tcp, 1 >

helics:1cp:TcpBrokerss helics::ze rome: ZmgBroker helics::ze romg: ZnoBrokerss

doxygen/tab_a.png

doxygen/classAsioContextManager.png
stenable_shared_from_this< AsioContextManager >

[

‘AsioContextianager

doxygen/sync_on.png

doxygen/classhelics_1_1BrokerFactory_1_1BrokerBuilder.png
helics:Broke P actory:Broke rBuilder

I

helics:BrokerFactory:BrokerTypeBuilder< BrokerTYPE >

doxygen/tab_h.png

doxygen/classhelics_1_1BrokerBase.png
helics: BrokerBase

T

helics:CommonCare

helics:CoreBroker

helics:CommsBroker< COMMS, CommanCore >

helics:CommsEroker< MpiCamms, CammanCore >

helics:CommsBroker< TepCommsSS, CommanCore >

helics:CommsBroker< ZmgComms, CommanCore >

helics:CommsBroker< ZmqCommsSs, CommanCore >

helics:CommsBroker< COMMS, CareBroker >

helics:CommsBroker< MpiCamms, CareBroker >

helics:CommsBroker< TepCammsSS, CoreBroker >

helics:CommsBroker< ZmgComms, CoreBraker >

helics:CommsBroker< ZmgCommsSs, CoreBraker >

helics:MuliBroker

doxygen/tab_b.png

doxygen/open.png

doxygen/nav_h.png

doxygen/structhelics_1_1detail_1_1imemstream.png
stdzios_base

streambut sto-basic_istreani< char >
~ helics-detail-membut | staistream

B

helics: detail-memstream

doxygen/splitbar.png

doxygen/structhelics_1_1detail_1_1ostringbufstream.png
stdzios_base

V7 atasic ns Crar
V1729727277720
streambut sto-basic_ostrearms char >

"~ helics:detail-ostringouf sta-ostream

— °f

helics: detail-ostringhurstrean

doxygen/structhelics_1_1detail_1_1ostreambuf.png
streambuf

|

helics: detail-ostreambuf

doxygen/classhelics_1_1FunctionExecutionFailure.png
stexception

helics: HelicsException

helics:FunclionExeculionF ailure

doxygen/classhelics_1_1HelicsException.png
stexception

helics: HelicsException

helics:ConnectionF ailure

helics:FunctionExecutionF ailure

helics: HelicsSystemFailure

helics:InvalidConversion

helics:InvaligFunctionCall

helics:Invalididentiier

helics:InvalidParameter

helics:RegistrationFailure

doxygen/classhelics_1_1HelicsConfigJSON.png
ConfigBase

|

helics:HelicsConfigJSON

doxygen/classhelics_1_1Input.png
helics:Input

[

helics:nputT= X >

doxygen/classhelics_1_1HelicsSystemFailure.png
stexception

helics: HelicsException

helics:HelicsSystenF ailure

doxygen/classhelics_1_1InvalidConversion.png
stexception

helics: HelicsException

helics:nvalidConversion

doxygen/classhelics_1_1InputT.png
helics:input

|

helics:nputT= X >

doxygen/classhelics_1_1FilterOperator.png
helics:FitterOperator

helics:ClaneOperator

helics::CustomMessageOperator

helics: FirewallOperator

helics:MessageCondionalOperatar

helics:MessageDataOperator

helics:MessageDestOperatar

helics:MessageTimeOperator

helics:NullFiterOperatar

doxygen/classhelics_1_1FilterOperations.png
helics:FitterOperations

T

helics: ClaneFilterOperation

helics: DelayFilterOperation

helics:FirewallFilte Operation

helics:RandomDelayFilterOperation

helics:RandamDopFilte Operation

helics:RerouteFilterOperation

doxygen/classhelics_1_1FirewallOperator.png
helics:FitterOperator

|

helics: FirewallOperator

doxygen/classhelics_1_1FirewallFilterOperation.png
helics:FitterOperations

|

helics:FirewallFiltz Operation

doxygen/classhelics_1_1DelayFilterOperation.png
helics:FitterOperations

|

helics:DelayFite Operation

doxygen/classhelics_1_1CustomMessageOperator.png
helics:FitterOperator

|

helics:CustomMessageOperatar

doxygen/classhelics_1_1Federate.png
helics:Federate

T

helics:MessageFederate

helics:ValueF ederate

helics:CombinationF ederate

helics:CombinationF ederate

doxygen/classhelics_1_1DependencyInfo.png
helics: TimeData.

|

helics:Dependencyino

doxygen/classhelics_1_1Filter.png
helics:Filter

[

helics: CloningFiter

doxygen/classhelics_1_1FederateInfo.png
helics::CoreFederatelnfo

I

helics:Federaeinto

doxygen/classhelics_1_1CoreBroker.png
helics:Broker

helics: BrokerBase

t

f

helics:CoreBroker

helics:CommsBroker< COMMS, CoreBroker >

helics:Commsroker< MpiCamms, CareBroker >

helics:CommsBroker< TepCammsSS, CoreBroker >

helics:CommsBroker< ZmgComms, CoreBraker >

helics:CommsBroker< Zm

qCommsSS, CoreBroker >

helics:MuliBraker

helics:NetworkBroker< COMMS, baseline, tcade >

helics:mpi:MpiBraker

helics:NetworkBroker< TcpCommsSs, interface_type:icp, stalic_cast< Int >(care_type:TCP_SS)>

helics:NetworkBraker< ZmaComms, interface_type:tcp, 1 >

helics:NetworkBroker< ZmgCommsSs, interface_type:tcp, 1 >

helics:1cp:TcpBrokerss

helics::ze rome: ZmgBroker

helics: zeromy;

ZmgBrokerss

doxygen/classhelics_1_1Core.png
helics::Core

helics:CommonCare

helics:CommsBroker< COMMS, CommanCore >

helics:CommsEroker< MpiCamms, CammanCore >

helics:CommsBroker< TepCommsSS, CommanCore >

helics:CommsBroker< ZmgComms, CommanCore >

helics:CommsBroker< ZmqCommsSs, CommanCore >

helics:NetworkCare< COMMS, haseline >

helics:mpi:MpiCare

helics:NetworkCare< TepCommsSs, interface_type:icp >

helics:NetworkCare< ZmgComms, inferface_type:icp >

helics:NetworkCare< ZmgCommsSs, interface_type:icp >

helics:1cp:TcpCoress

helics::ze romg:ZmgCore

helics:ze romg:ZngCoress

doxygen/classhelics_1_1CoreFactory_1_1CoreTypeBuilder.png
helics:CoreF actory:CoreBuilder

I

helics:CoreFactory:CoreTypeBulder< CoreTvPE >

doxygen/classhelics_1_1CoreFactory_1_1CoreBuilder.png
helics:CoreF actory:CoreBuilder

I

helics:CoreFactory:CareTypeBuider< CoreTYPE >

doxygen/classhelics_1_1CoreFederateInfo.png
helics::CoreFederatelnfo

[

helics:Federatelnfo

_images/Ex1b_Bus_voltage_118.png
Voltages (in p.u.)

Bus 118 of IEEE 118 Bus System

1.03
1.02
1.01
1
0.99
0.98
0:00 2:24 4:48 7:12 9:36 12:00 14:24 16:48 19:12 21:36
Time of Day

——With EV Controller =~ ——Without EV Controller

0:00

_images/Ex1b_EV_outputs.png
ov:ze

H
(M) puewaq eay

& 8 8
(M) puewaq |eay

5 .
s oz1z 2
g 000z £
o 8]
S o8t S
- z ozt 3
g ilg 0091 5
M P Y orvr > 2
] gz] 1 8 g
2 8 g ozer & £
= o = 7
£ 5 2 o0zt S
g 2 o} ovior g
S E L ot E
2 5|2 0zs F o
£ i £ o8 &
g £ B ori9 2
k1 §| @ ozs s
> w m
> ooy 2
: oz @
g oz1 %
m_ o o (= =3 o
28 8 8 s NI N
a2 9
(TET
(W) p! a leay (M) puewsaq |eay
oz 5 :
otz 8 o &
o stIe 5
wor g os6T £
) e 2 szgr S
oy o9t 3| e ou B
: ot 5 £ & SEiST 3
S ozt 8 3 | 8 otvt F
= oozt 5 = syt & 3
g ovior ¢] oz g
2 owe W ssi6 £
£ posss 5| 2 og:8 5
£ ws 5| B 0L K
s s 5| @ ors £
oy o | W sto 2
oz B 05 o
ozt E szt £
w0 3 : H
w =3 o (=3 o e
] 8 8 g 2 2 8 & 8 R
(M) puewaq eay "l puewsg
(M) puewaq |eay
oz g :
W g ww g
s stz 3
et 8 S
. 8
© 0oLt @ wn B
o e P o0t W
s 2 s& g
m oTvT T £ o ter 7 2
] szt 22 | O oo 8 2
8 g K] vz 2 3
< 11212 2 = .
$ ol $ 0TIl o
- COE -
e ogg T 8 | © ooe & 3
5 0L 3 s o H
2 ovis H g ows m
] sty o m i S
o .
sz © P a
o 0siz =
S = f
2 8 3 8 3 4
g 8 8 =8 g 8 8 8 =8

_images/Ex1a_Message_topology.png
Message Topology

Positive sequence

p

Transmission and
Generation
System Federate

substation voltage

Positive sequence

substation load

ystem
Federate

_images/Ex1b_Broker_topology.png
Broker Topology

Transmission and

Generation ontrolle
System Federate Federate Federate

J

_images/Ex1c_EV_outputs.png
e =
: 5 owtz &
00:0z £ ooz B
o8t 2 SME 2
[L1272 2 . 3
< oot £ o g
#* . Elw 009t E
o OFT > ¢ [N
S over 83| 2 Fz
k] Loz | 5 ozer o ¥
5 EHIE s
g ot g g ovior ¢
o oze F g 6 = o
£ og 2| 2 oy £
= Z| £ [I
154 o9 o B S
2| © o9 o
2 0z:s 5| @ c
“ ov 3| W 0TS g
o A [
124 g oriT S
- 8
ozr 8 ozt 8
000 @ oo @
g &8 8 8 8 ° 2 8 8 8 =8
(W) puewaq jeay % () Puewsg jesy
2 o
ovzz 2 ovzz @
STz ¢ stz £
os6T 5 osier %
sT8T & _—lszst 5
o0t 8 (LA
) £ g
0 sest 5 | @ seisT £
. > O o >89
@ o Fe | o ot §S
..m ST S vzt .m..._
S 0TI o S 0zIT o
S 556 .m o | > ssi6 £
2 oes T 3|9 oes | §
] S0:L b S S0:L e
2 or's tl o ors 2
7] ST s | @ sty &
osz & osz £
ser 8 sT1 g
0 @ w00 3
s o o
8 § 3 § 8 ° [| 8 8 58 8 =
(M) puewaq jeay (M) puewaq feay
_ oz & oz g
oziz £ oz1z £
ooz E 000z £
H
ovsr ovsT w
oz 5 [ITA S
% 00:9T £ nm o091 £
H
P orvr = 8 o ot > 8
S werd @ | g ozEl O &
= 00:zT S = o0:zt
g ovior & g ovior ¢
© 06 F £ © 0z6 = o
S oz 2| oo:g 2
S ovi9 ° © ovi9 S
2 ows g m o0zs 5
wov 3 [
o'z £ (124 £
0z:T N 0z:T 8
00:0 o 00:0 1
g 8 8 8 &8 ~° g 8 8 8 8

& 2 3
(W) puewaq |eay

& 4 9
(M) puewsaq |eay

_images/Ex1c_Feeder_consumption.png
IEEE 123 node feeder

3.9

~ n o

{(mw) uondwnsuod

-
P

19paag

@
§

2.7

25

9€E€T
[A %14
8rTT
vz
ooze
9€:1T
[Ant4
8r0T
vzoz
[sls}s74
9€6T
TT6T
88T
vZ8tT
00'8T
9E€LT
CTLT
8r9T
\z4:1%
0091
9€:ST
crst
k1449
i 74149
00T
9EET
CLET
8rTT
\z44%
[slskr4 4
9ETT
CTIT
8r0T
vzot
0001
9E'6
6
8p'8
vei8
00:8
9EiL
[4274
8v'9
vZi9
00:9
9€'S
ns
k144
veiv
007
9E'E
CUiE
24
vz
00:Z
9E'T
T
8v'0
vZio
00:0

Time of Day
EV Controller without filters = == Feeder Loadability Limit (upper) = = Feeder Loadability Limit (lower)

EV Controller with filters

_images/Ex1b_Feeder_consumption.png
IEEE 123 node feeder

45

I

4 = e - === = ===

o
B

(M) uondwnsuo) 1apaay

25

0S'€T
V744
89T
CETT
90T
ov'te
ja1t4
8r0T
[44 4
996T
og6T
vo6T
8€8T
18T
LT
0zTiLT
rS9T
89T
2091
9€:ST
oT'ST
124414
8TwT
CSET
9TET
00 €T
veTT
80TT
It
9ITIT
0s0T
vzot
8S'6
€6
906
ov:g
14
8piL
L
959
0€:9
09
8€'S
ns
k144
oz
vSi€
8T'€
20'€
9€'T
otz
wit
8T:T
50
9z:i0
00:0

Time of Day

Without EV Controller = = Feeder Loadability Li

it (lower)

ity Limi

it (upper) = = Feeder Loadabil

imi

With EV Controller

_images/Ex1b_Message_topology.png
Transmission and
Generation
System Federate

Message Topology

Positive sequence

substation voltage Substation
load

Federate Federate
EV charger
Positive sequence ° commands

substation load

_images/Ex1c_Message_topology.png
Transmission and
Generation
System Federate

Message Topology

Positive sequence Substation
substation voltage load

Federate Federate

EV charger

Positive sequence ° commands
substation load

_images/HELICS.png
“chat on gitter

nav.xhtml

 Table of Contents

 		
 HELICS documentation

 		
 Installation

 		
 Quick start

 		
 Using an installer for your operating system

 		
 Using a package manager for your operating system

 		
 Package Manager

 		
 OS Specific installation from source

 		
 Windows Installation

 		
 Mac Installation

 		
 Linux Installations

 		
 Docker

 		
 HELICS with language bindings support

 		
 Linking with the HELICS Library

 		
 HELICS CMake options

 		
 Introduction

 		
 Hello World

 		
 Python Example

 		
 Java Minimal Example

 		
 MATLAB

 		
 Prerequisites

 		
 Building HELICS with MATLAB extension

 		
 Build SWIG MATLAB source

 		
 Compile MATLAB extension

 		
 Test HELICS MATLAB extension

 		
 Terminology

 		
 Types of Federates

 		
 Value vs Message

 		
 Filters

 		
 Federation

 		
 Example with delay

 		
 Example with communication system

 		
 Interfacing with HELICS

 		
 Endpoints

 		
 Inputs

 		
 Publications

 		
 User Guide

 		
 Who Is This User Guide For?

 		
 User Guide Overview

 		
 Additional Resources

 		
 Tools with HELICS Support

 		
 Power Systems Tools

 		
 Electric Distribution System Simulation

 		
 Electric Transmission System Simulation

 		
 Real time simulators

 		
 Electric Power Market simulation

 		
 Contingency Analysis tools

 		
 Communication Tools

 		
 Gas Pipeline Modeling

 		
 Optimization packages

 		
 Transportation modeling

 		
 Buildings

 		
 Federate Configuration

 		
 Federate Configuration

 		
 Federate Name

 		
 Core information

 		
 Timing information

 		
 Interface configuration

 		
 Message Federates

 		
 API calls

 		
 Value Federates

 		
 API calls

 		
 Filters

 		
 Filter Creation

 		
 predefined filters

 		
 Federate Timing

 		
 Timing Parameters

 		
 Timing Flags

 		
 Federate info

 		
 Timing control variables

 		
 Timing flags

 		
 Other Controls

 		
 Federate flags

 		
 single_thread_federate

 		
 ignore_time_mismatch_warnings

 		
 connections_required

 		
 connections_optional

 		
 strict_input_type_checking

 		
 slow_responding

 		
 debugging

 		
 terminate on error

 		
 Core Types

 		
 Test

 		
 Interprocess

 		
 ZMQ

 		
 ZMQ_SS

 		
 UDP

 		
 TCP

 		
 TCP_SS

 		
 MPI

 		
 Apps

 		
 Recorder

 		
 Command line arguments

 		
 config file detail

 		
 Player

 		
 Command line arguments

 		
 Config File Detail

 		
 Source

 		
 Command line arguments

 		
 Config File Detail

 		
 helics_app

 		
 Echo

 		
 Player

 		
 Recorder

 		
 Tracer

 		
 Source

 		
 Broker

 		
 Clone

 		
 MultiBroker

 		
 Command Line Arguments

 		
 Echo

 		
 Command line arguments

 		
 Tracer

 		
 Command line arguments

 		
 Config File Detail

 		
 Broker

 		
 Command line arguments

 		
 Broker Server

 		
 Command line arguments

 		
 Clone

 		
 Command line arguments

 		
 C API Reference

 		
 Enum

 		
 Functions

 		
 Broker

 		
 Core

 		
 Endpoint

 		
 FederateInfo

 		
 Federate

 		
 Filter

 		
 Input

 		
 Message

 		
 Publication

 		
 Query

 		
 Others

 		
 C++ API Reference (Doxygen)

 		
 Developer Guide

 		
 Style Guide

 		
 Naming Conventions

 		
 Generating SWIG extension

 		
 Run tests

 		
 Generating Documentation

 		
 HELICS Benchmarks

 		
 Baseline benchmarks

 		
 Simulation Benchmarks

 		
 Message Benchmarks

 		
 Standardized Tests

 		
 Multinode Benchmarks

 		
 Description of the different continuous integration test setups running on the CI servers

 		
 Travis-CI Tests

 		
 Appveyor tests

 		
 Azure tests

 		
 Circle CI

 		
 Drone

 		
 Cirrus CI

 		
 Read the docs

 		
 Codacy

 		
 Public API

 		
 RoadMap

 		
 [2.8] ~ 2021-06-15

 		
 [3.0] ~ 2021-05-05 Beta, Final release approximately a month later

 		
 [3.1] ~ 2021-07-15

_images/addExistingSender.jpg
BB Wt Vew P M Dk Wt Ao ek fiesow Wndow Hep o B [ey yonder
o

) 6-n o] 5-]

B

_images/ami_message_federate.png
Aggregator

Power
measurement

Power
measurement

Power
measurement

Power
measurement

_images/OpenFolder.jpg
Add
60To Gt Changes

Configure Tosks

Scopeto This

cut

copy

Paste

Delete:

Rename.

Open Folderin Fle xplorer

Open Developer Command Prompt
Copy path

Solution Explorer - Folder View
Co@E- s Cam| -
Search Solution Explorer - Folder View (C

4 1 hello_word_sender (CAUsers\hgngo\source\reposihello_world_sender)
el world sender
61

elo world_senderexe

Clrte0,CirlsG hello_world_senderiob;
el world_senderipc
elo_world_senderpdb
orld_sendersin

wsaubeg

oL

_images/configureSender.jpg
Configure your new project

Empty Project ¢+ Weeom Garsoe

Proactname.

[roami

Locston

[

Solutonname ©

L1 Place sotuton and prejectinthe same directory

Back

Creste

_images/ditl_broker_topology.png
Broker Topology

4 | N\

HE I_l&ﬁ@t@? \

_images/atmospheric.png
Precipitation, ambient temperature

Humidity, sunlight reflectivity

_images/configureReceiver.jpg
Configure your new project

Empty Project c- wecoms corsoe

Projactname.

helloworld receves

Locstion

Csersthgngesourcarepes

Solutonname @

hello vorid secever

7] Place solution and project inthe same directory

Bk

=1

_images/ditl_message_topology.png
Message Topology

f B Positive sequence e
substation voltage

Positive sequence
substation load

_images/federation.png
Control Signals

AGC
Controller

_images/filter_federate_example.png

_images/filter-comm-system.png
Data

Communication
Simulation

AGC
Controller

Communication
Simulation

Control Signals

_images/filter-delay.png
Control Signals

AGC
Controller

_images/helics_architecture_3.png
Executable

Computer

Executable

Executable

Computer

_images/helics_architecture_4.png
Computer

s) 2|
Q
Qo
3| 3.1 o
w x_..n_l.w
E_u
' o
.............. . E
e_o
Q U_C
Qo
W s
[0} U_
e [$]
i 2 |
woy
|
|||||||||||||| |
s) 2|
Q
© T |
9] 5
g 21
@ 21 O
w x s
E_u
' o
IIIIIIIIIIIIII —O
0 1 O
[0} 5 |
Qo
© T |
P -
3 3 |
_ e 2
I &
! |

_images/helics_architecture_1.png
Federate
Executable

Federate

Federate

Executable

Computer

_images/helics_architecture_2.png
Federate
Executable

Federate

Executable

Federate

Computer

doxygen/folderopen.png

doxygen/nav_g.png

doxygen/nav_f.png

doxygen/closed.png

doxygen/classhelicscpp_1_1ValueFederate.png
helicscpp:ValueF ederate

helicscpp:CombinationF ederate

doxygen/doc.png

doxygen/doxygen.png
doxy.ge

doxygen/folderclosed.png

_images/installerEXE.jpg
® Helics-2.6.0-Linux-x86_64.targz
@ Helics-2.6.0-macOS-xB6_64.2ip.

© Helics:2.6.0-msvc2017-

inaip
© Hellcs260-msve2019-winGi.2ip

@ Helics-26.0-win32zip

© Helice26 Q-winbhexe

© Helics26.0-winbd.zip

© Helics-shared.-2.6.0-Linux 06 64.targz
© Hellcs-shared-2.6.0-macOS x36 64 1argz
© Helic-shared-2.6.0-win32.argz

® Helics-shared-2.6.0-win64targz

© Helics-12.60-5HA-256.1xt

© Helics12.6.0-sourcetorgz

D Source code (zp)

[Source code (targa)

152m8

s v

sasmE

753m8

9zsme

6asme

105 M8

3028

212m8

123m8

148

11368

16318

_images/locationSender.jpg
) Add Existing tem - hello_world_sender X

+[®> * + HELICS-Examples » < » bellowoid To

Organize v New folder o @
A O Name - Date modified. Type Size.
*
: CMatatisste SBATIHM Tt Document e
"€ hello_world_receiver.c 9/30/2020 7:36 PM. C source file ax8
1 oo sendene SAANTGIM Caomeefie i)
5 e a0 TM e]
If 4 run_hello_workd sh 93012000736 PM ShellScript %8
[
[
[
«
I
-
il name: el wordsenderc AiFies () v

] [

_images/helics_timing_example.png
1ms 1.5 ms 2ms

0.5 ms

Oms

Federation time

swig = }senbai awiny

time grant = 2ms

Swg = jsenbas awiy

t=1ms

time gran

time grant =

SW |- = }senbaJ ew}

$8109
SOIN3aH

awi| xew = 1senbai awi}

Swg'g = 1senbay awiy

time grant = 1.5ms

time grant = 2ms

awi| xew=}senbai awi}

swg'| = 1senbai awi.

0.5ms

time grant = 1ms

awi] xew = jsanbai awn

SWwG'Q = 1senbai awi}

Generator

swg = }sanbau awiny

time grant = 2ms

swig = 1sanbai swn

time grant = 1ms

swi| = jsanbai awn

Generator
Controller

Power
System

Wall-Clock Time

_images/python-example.png
Gevelop 11
python pisender.py

PI SENDER: Helics version = 1.0.0-alpha.3 (02-12-18)

Creating Broker
Created Broker

Checking if Broker is connected
Checked if Broker is connected

Broker created and connected

PI SENDER: Value federate created
PI SENDER: Publication registered
PI SENDER: Entering execution mode

PI SENDER: Sending value pi
PI SENDER: Sending value pi

PI SENDER: Sending value pi =

PI SENDER: Sending value pi

PI SENDER: Sending value pi =
PI SENDER: Federate finalized

3.141592653589793
3.141592653589793
3.141592653589793
3.141592653589793
3.141592653589793

PI SENDER: Broker disconnected

develop

python pireceiver.py

Helics version = 1.0.0-alpha.3 (02-12-18)

PI
PI
PI
PI
PI
PI
PI
PI
PI
PI
PI
PI
PI
PI
PI
PI
PI
PI

RECEIVER:
RECEIVER:
RECEIVER:
RECEIVER:
RECEIVER:
RECEIVER:
RECEIVER:
RECEIVER:
RECEIVER:
RECEIVER:
RECEIVER:
RECEIVER:
RECEIVER:
RECEIVER:
RECEIVER:
RECEIVER:
RECEIVER:
RECEIVER:

Creating Federate Info
Setting Federate Info Name

Setting Federate Info Core Type
Setting Federate Info Init String
Setting Federate Info Time Delta
Setting Federate Info Logging

Creating Value Federate
Value federate created
Subscription registered
Entering execution mode
Current time is 5.0

Received value
Received value
Received value

Federate finalized

3.141592653589793
3.141592653589793
3.141592653589793
Received value = 3.141592653589793
Received value = 3.141592653589793

at time 5.0 from PI SENDER
at time 6.0 from PI SENDER
at time 7.0 from PI SENDER
at time 8.0 from PI SENDER
at time 9.0 from PI SENDER

develop

LBg 5277 10:53:38 |

_images/results.jpg
Ci\Users\ \HELICS\helics_2_6_@\binshelics_broker -f2

Ci\Users\ \HELICS\helics_2.¢

\bin>

HELICS granted tine:1.000000

C:\Users\ N\source\repos\hello_uorld_sender\x64\Release\hello_world_sender.exe (process 35460)
To automatically close the consols when debugging stops, enable Tools->0ptions->Debugging->Autom:
uhen debugging stops.

Press any key to close this window .

exited with code o
he consold

Scally clos:

HELICS granted tine:1.000000
Hello, World

C:users\ s\source\repos\hello_uorld_receiver\xsé\Release\hello uorld_receiver.exe (process 12116) exited with code o,
To automatically close the consols when debugging stops, enable Tools->0ptions->Debugging->Automatically close the consold
uhen debugging stops.

Press any key to close this window .

_images/matlab-success.png
<MATLAB (R) >
Copyright 1984-2017 The MathWorks, Inc.
R2017b (9.3.0.713579) 64-bit (maci64)
September 14, 2017

For online documentation, see http://www.mathworks.com/support
For product information, visit www.mathworks.com.

>> helicsStartup

Loading HELICS ...

>> helics.helicsGetVersion()

ans =

‘1.2.0 (06-18-18)"

_images/messages_and_filters_example.png
Message Topology

Source:
random delay
[0,1.5] seconds

Destination:
Source: 6% drop rate
0.5 s delay

_images/settingsInclude.jpg
Config

jorld_sender Property Pages

uration: | Active(Release)

<] Platorm: [Adiebs) <] [Configuraton Mansger..

4 Configuration Properties

Additional Include Directories

General
Advanced

Debugging

VC++ Directories

C/Cer

Linker

Manifest Tool

XML Document Generatol
Browse Information

Build Events

Custom Build Step.

Code Analysis

Additional Include Directories

t

Evaluated value:

Sé(AdditionalincludeDirectories)

C:\Users\hgngo\HELICS\helics_2_6_O\include A

lumn)

Inherited values:

[inhertfrom parent or project defauks

(lfpath))

| Macros>>

ok || cmee |

Specifies one or more directories to add to the include path; separate with semi-colons if more than one.

k] [R

_images/settingLib.jpg
hello_work Pages

[isvinspoolib;comdiga2.iba

Configuration: | Active(Release) | Platform: | Active(x64)
4 Configuration Properties_ | _Look for options or switches:
Gont Additional Dependencies. 7 X
Advanced
Debugging helicsSharedLiblib| A
VC++ Directories ¥
b C/Cee =)
4 Linker
sl Evlusted value:
Input helicsSharedLib.ib B
Maniest File Sé(AdditionalDependencies) W
Debugging < >
Optimiaation Inherited values:
Embedded IDL kemel32 b B
Windows Metadata | user32 b
Adanced i v
A1l Options. = 5
ot tne || EAinheritfrom parentor project defauts ‘ Marass
b Manifest Tool —
b XML Document Genera o] e |
b Browse Information
3 Additional Dependencies
Specifies additiona tems to add to the link command line. i kemel32]

[oc] [[an |

_images/settingLibDir.jpg
hello_world_sender Property Pages

Configuration: | Active(Release)

4 Configuration Properties A

| Platform: | Activelx6s)

General
Advanced
Debugging
VCr+ Directories
crchr
Linker
General
Input
Manifest File
Debugging
System
Optimization
Embedded IDL
Windows Metadata
Advanced
Al Options
Command Line
Manifest Tool
XML Document Genera
Browse Information
Build Events

Look for options or switches:

Additional Library Directories

CUsers: HELICS/helics 2 6 0/bin
Cy/Users/) o/ HELICS helics_2_6.0/lib
<

Evalusted value:

Ci/Users/hgngo/HELICS/helics_2_6_0/bin
Ci/Users/hanao/HELICS helics 2 6 O/lib

Inheiited values:

[Ainhesit from parent or project defaults

Additional Library Directories

Allows the user to override the environmental ibrary path. (/LIBPATH:folder)

ok | [Tcanc | [hey

doxygen/classhelicscpp_1_1Filter.png
helicscpp:Filter

[

helicscpp:ClaningFiter

doxygen/classhelicscpp_1_1MessageFederate.png
helicscpp:MessageFederate

helicscpp:CombinationF ederate

doxygen/classhelicscpp_1_1HelicsException.png
stexception

stduntime_error

helicscpp:HelicsException

doxygen/classhelics_1_1udp_1_1UdpComms.png
helics::Commsinterface

helics:NetworkCommsinte face

helics:udp:UdpComms

doxygen/classhelics_1_1zeromq_1_1ZmqBrokerSS.png
helics:Broker

helics: BrokerBase

t

f

helics:CoreBroker

helics:CommsBroker< ZmgCommsSs, CoreBraker >

helics:NetworkBroker ZmgCommsSs, interface_type:tcp, 1 >

helics::ze romg: ZngBrokerss

doxygen/classhelics_1_1zeromq_1_1ZmqBroker.png
helics:Broker

helics: BrokerBase

t

f

helics:CoreBroker

helics:CommsBroker< ZmgComms, CoreBraker >

helics:NetworkBraker< ZmaComms, interface_type:tcp, 1 >

helics: ze rome: ZmgBroker

doxygen/classhelics_1_1zeromq_1_1ZmqCommsSS.png
helics::Commsinterface

helics:NetworkCommsinte face

helics: ze rome: ZngCommsss

doxygen/classhelics_1_1zeromq_1_1ZmqComms.png
helics::Commsinterface

helics:NetworkCommsinte face

helics::ze romg: ZmgComms

doxygen/classhelics_1_1zeromq_1_1ZmqCoreSS.png
helics::Core

helics: BrokerBase

t

f

helics:CommonCare

helics:CommsBroker< Zm

Comms5S, CommonCore >

helics:NetworkCare< ZmgCor

mmsSS, interface_type:icp >

helics:ze romg: ZngCoress

doxygen/classhelics_1_1zeromq_1_1ZmqCore.png
helics::Core

helics: BrokerBase

t

f

helics:CommonCare

helics:CommsBroker< ZmgComms, CommanCore >

helics:NetworkCore< ZmoC

omms, interface_typ